Involvement of matrix metalloproteinase type-3 in hepatocyte growth factor-induced invasion of human hepatocellular carcinoma cells



Intra-hepatic invasion is a key feature of hepatocellular carcinoma (HCC) progression. We have shown that human liver myofibroblasts induce invasion of HCC cells through Matrigel, via the secretion of hepatocyte growth factor (HGF). In our study, we investigated the role of matrix metalloproteinases (MMP) in HGF-induced HCC cells invasion. Marimastat, a synthetic MMP inhibitor, dose-dependently decreased HGF-induced invasion of HepG2 cells with a maximum of 82.7 ± 13.3% at 20 μM. TIMP-2, a natural inhibitor, decreased invasion up to 51.2 ± 11.2% at 200 ng/ml. To determine the target for these inhibitors, we examined MMP expression using RT-PCR. MMPs 1, 7–9 and 10 were not expressed in HepG2 cells either in the absence or in the presence of HGF. MMP-2 and MMP-13 transcripts were detected in unstimulated cells but their expression was unchanged after exposition to HGF. MMP-3 transcripts were undetectable in unstimulated HepG2 cells. They became clearly expressed in HGF-stimulated cells, however, and this was confirmed by Northern blot. By Western blot, HGF dose-dependently stimulated the secretion of pro-MMP-3 in the culture medium. The role of MMP-3 in HGF-induced invasion was directly confirmed by using an antibody to MMP-3, that blocked invasion. Finally, RT-PCR demonstrated MMP-3 expression in 10/16 human HCCs tested, but not in normal liver. In conclusion, our data demonstrate that MMPs, most likely MMP-3, mediate HGF-induced invasion of HCC cells. The in vivo expression of MMP-3 in HCC suggests a role for this protease in HCC progression. © 2002 Wiley-Liss, Inc.