• 1
    Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990; 61: 20312.
  • 2
    Plowman GD, Culouscou JM, Whitney GS, Green JM, Carlton GW, Foy L, Neubauer MG, Shoyab M. Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proc Natl Acad Sci USA 1993; 90: 174650.
  • 3
    Daly RJ. Take your partners, please—signal diversification by the erbB family of receptor tyrosine kinases. Growth Factors 1999; 16: 25563.
  • 4
    Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 1997; 16: 164755.
  • 5
    Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, Ratzkin BJ, Yarden Y. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 1996; 16: 527687.
  • 6
    Hung MC, Lau YK. Basic science of HER-2/neu: a review. Semin Oncol 1999; 26(Suppl): 519.
  • 7
    Gullick WJ. The role of the epidermal growth factor receptor and the c-erbB-2 protein in breast cancer. Int J Cancer Suppl 1990; 5: 5561.
  • 8
    Seshadri R, Firgaira FA, Horsfall DJ, McCaul K, Setlur V, Kitchen P. Clinical significance of HER-2/neu oncogene amplification in primary breast cancer. The South Australian Breast Cancer Study Group. J Clin Oncol 1993; 11: 193642.
  • 9
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 17782.
  • 10
    Drebin JA, Link VC, Stern DF, Weinberg RA, Greene MI. Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 1985; 41: 697706.
  • 11
    Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 1989; 9: 116572.
  • 12
    Harwerth IM, Wels W, Schlegel J, Muller M, Hynes NE. Monoclonal antibodies directed to the erbB-2 receptor inhibit in vivo tumour cell growth. Br J Cancer 1993; 68: 11405.
  • 13
    Lewis GD, Lofgren JA, McMurtrey AE, Nuijens A, Fendly BM, Bauer KD, Sliwkowski MX. Growth regulation of human breast and ovarian tumor cells by heregulin: evidence for the requirement of ErbB2 as a critical component in mediating heregulin responsiveness. Cancer Res 1996; 56: 145765.
  • 14
    Li X, Stuckert P, Bosch I, Marks JD, Marasco WA. Single-chain antibody-mediated gene delivery into ErbB2-positive human breast cancer cells. Cancer Gene Ther 2001; 8: 55565.
  • 15
    Urbanelli L, Ronchini C, Fontana L, Menard S, Orlandi R, Monaci P. Targeted gene transduction of mammalian cells expressing the HER2/neu receptor by filamentous phage. J Mol Biol 2001; 313: 96576.
  • 16
    Karasseva NG, Glinsky VV, Chen NX, Komatireddy R, Quinn TP. Identification and characterization of peptides that bind human ErbB-2 selected from a bacteriophage display library. J Protein Chem 2002; 21: 28796.
  • 17
    Houimel M, Schneider P, Terskikh A, Mach JP. Selection of peptides and synthesis of pentameric peptabody molecules reacting specifically with ErbB-2 receptor. Int J Cancer 2001; 92: 74855.
  • 18
    Fendly BM, Winget M, Hudziak RM, Lipari MT, Napier MA, Ullrich A. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res 1990; 50: 15508.
  • 19
    Slamon D, Pegram M. Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Semin Oncol 2001; 28(1 Suppl 3 ): 139.
  • 20
    Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, Sklarin NT, Seidman AD, Hudis CA, Moore J, Rosen PP, Twaddell T, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 1996; 14: 73744.
  • 21
    Zwick MB, Shen J, Scott JK. Phage-displayed peptide libraries. Curr Opin Biotechnol 1998; 9: 42736.
  • 22
    Scott JK, Craig L. Random peptide libraries. Curr Opin Biotechnol 1994; 5: 408.
  • 23
    Nilsson F, Tarli L, Viti F, Neri D. The use of phage display for the development of tumour targeting agents. Adv Drug Deliv Rev 2000; 43: 16596.
  • 24
    Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228: 13157.
  • 25
    Markland W, Roberts BL, Saxena MJ, Guterman SK, Ladner RC. Design, construction and function of a multicopy display vector using fusions to the major coat protein of bacteriophage M13. Gene 1991; 109: 139.
  • 26
    Romanov VI. Phage display selection and evaluation of cancer drug targets. Curr Cancer Drug Targets 2003; 3: 11929.
  • 27
    Chiang L-C SJ, Pipas JM, Barnes DW. Methods for serum-free culture of epithelial and fibroblastic cells. In: Barnes DWSD, SatoGH, eds. Cell culture methods for molecular and cell biology, vol. 1 New York: Alan R. Liss, Inc., 1984. 26576.
  • 28
    Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science 1990; 249: 38690.
  • 29
    Cwirla SE, Peters EA, Barrett RW, Dower WJ. Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci USA 1990; 87: 637882.
  • 30
    Pero SC, Oligino L, Daly RJ, Soden AL, Liu C, Roller PP, Li P, Krag DN. Identification of novel non-phosphorylated ligands, which bind selectively to the SH2 domain of Grb7. J Biol Chem 2002; 277: 1191826.
  • 31
    Valadon P, Scharff MD. Enhancement of ELISAs for screening peptides in epitope phage display libraries. J Immunol Methods 1996; 197: 1719.
  • 32
    Zwick MB, Bonnycastle LL, Noren KA, Venturini S, Leong E, Barbas CF, 3rd, Noren CJ, Scott JK. The maltose-binding protein as a scaffold for monovalent display of peptides derived from phage libraries. Anal Biochem 1998; 264(1): 8797.
  • 33
    Barrett RW, Cwirla SE, Ackerman MS, Olson AM, Peters EA, Dower WJ. Selective enrichment and characterization of high affinity ligands from collections of random peptides on filamentous phage. Anal Biochem 1992; 204: 35764.
  • 34
    Carcamo J, Ravera MW, Brissette R, Dedova O, Beasley JR, Alam-Moghe A, Wan C, Blume A, Mandecki W. Unexpected frameshifts from gene to expressed protein in a phage-displayed peptide library. Proc Natl Acad Sci USA 1998; 95: 1114651.
  • 35
    Ryu DD, Nam DH. Recent progress in biomolecular engineering. Biotechnol Prog 2000; 16: 216.
  • 36
    Wrighton NC, Farrell FX, Chang R, Kashyap AK, Barbone FP, Mulcahy LS, Johnson DL, Barrett RW, Jolliffe LK, Dower WJ. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 1996; 273: 45864.
  • 37
    Press MF, Hung G, Godolphin W, Slamon DJ. Sensitivity of HER-2/neu antibodies in archival tissue samples: potential source of error in immunohistochemical studies of oncogene expression. Cancer Res 1994; 54: 27717.
  • 38
    Hart CP, Martin JE, Reed MA, Keval AA, Pustelnik MJ, Northrop JP, Patel DV, Grove JR. Potent inhibitory ligands of the GRB2 SH2 domain from recombinant peptide libraries. Cell Signal 1999; 11: 45364.
  • 39
    Martens CL, Cwirla SE, Lee RY, Whitehorn E, Chen EY, Bakker A, Martin EL, Wagstrom C, Gopalan P, Smith CW, et al. Peptides which bind to E-selectin and block neutrophil adhesion. J Biol Chem 1995; 270: 2112936.
  • 40
    Cwirla SE, Balasubramanian P, Duffin DJ, Wagstrom CR, Gates CM, Singer SC, Davis AM, Tansik RL, Mattheakis LC, Boytos CM, Schatz PJ, Baccanari DP, et al. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science 1997; 276: 16969.