SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Davis MM, Boniface JJ, Reich Z, Lyons D, Hampl J, Arden B, Chien Y. Ligand recognition by αβ T cell receptor. Annu Rev Immunol 1998; 16: 52344.
  • 2
    O'Garra A, Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol 2000; 10: 54250.
  • 3
    Rubio V, Stuge TB, Singh N, Betts MR, Weber JS, Roederer M, Lee PP. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 2003; 9: 137782.
  • 4
    Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 2001; 19: 197223.
  • 5
    Hayday A. Gamma delta T cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 2000; 18: 9751026.
  • 6
    Hinz T, Wesch D, Halary F, Marx S, Choudhary A, Arden B, Janssen O, Bonneville M, Kabelitz D. Identification of the complete expressed human T-cell receptor Vγ repertoire by flow cytometry. Int Immunol 1997; 9: 106572.
  • 7
    Deusch K, Luling F, Reich K, Classen M, Wagner H, Pfeffer K. A major fraction of human intraepithelial lymphocytes simultaneously expresses the γδ receptor, the CD8 accessory molecule and preferentially uses the Vγ1 gene segment. Eur J Immunol 1991; 21: 10539.
  • 8
    Parker CM, Groh V, Band H, Porcelli SA, Morita G, Fabbi M, Glass D, Strominger JL, Brenner MB. Evidence for extrathymic changes in the T-cell receptor γδ repertoire. J Exp Med 1990; 171: 1597612.
  • 9
    Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 1998; 279: 173740.
  • 10
    Glatzel A, Wesch D, Schiemann F, Brandt E, Janssen O, Kabelitz D. Patterns of chemokine receptor expression on peripheral blood γδ T lymphocytes: strong expression of CCR5 is a selective feature of Vδ2/Vγ9 γδ T cells. J Immunol 2002; 168: 49209.
  • 11
    Kabelitz D, Wesch A. Features and functions of γδ T lymphocytes: focus on chemokines and their receptors. Crit Rev Immunol 2003; 23: 33970.
  • 12
    Kabelitz D, Bender A, Schondelmaier S, Schoel B, Kaufmann SHE. A large fraction of human peripheral blood γδ T cells is activated by Mycobacterium tuberculosis but not by its 65-kD heat shock protein. J Exp Med 1990; 171: 66779.
  • 13
    Kabelitz D, Bender A, Prospero T, Wesselborg S, Janssen O, Pechhold K. The primary response of human γ/δ-positive T cells to Mycobacterium tuberculosis is restricted to Vγ9-expressing cells. J Exp Med 1991; 173: 13318.
  • 14
    Constant P. Davodeau F, Peyrat MA, Poquet Y, Puzo G, Bonneville M, Fournié JJ. Stimulation of human γδ T-cells by nonpeptidic mycobacterial ligands. Science 1994; 264: 26770.
  • 15
    Bukowski JF, Morita CT, Brenner MB. Human γδ T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 1999; 11: 5765.
  • 16
    Jomaa H, Feurle J, Luhs K, Kunzmann V, Tony HP, Herderich M, Wilhelm M. Vγ9/Vδ2 T cell activation induced by bacterial low molecular mass compounds depends on the 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis. FEMS Immunol Med Microbiol 1999; 25: 3718.
  • 17
    Belmant C, Espinosa E, Poupot R, Guiraud M, Poquet Y, Bonneville M, Fournié JJ. 3-Formyl-1-butyl pyrophosphate: a novel mycobacterial metabolite activating human γδ T cells. J Biol Chem 1999; 274: 3207984.
  • 18
    Altincicek B, Moll J, Campos N, Foerster G, Beck E, Hoeffler JF, Grosdemange-Billiard C, Rodriguez-Concepcion M, Rohmer M, Boron A, Eberl M, Jomaa H. Cutting edge: human γδ T cells are activated by intermediates of the 2-C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis. J Immunol 2001; 166: 36558.
  • 19
    Kabelitz D, Glatzel A, Wesch D. Antigen recognition by human γδ T lymphocytes. Int Arch Allergy Immunol 2000; 122: 17.
  • 20
    Yamashita S, Tanaka Y, Harazaki M, Mikami B, Minato N. Recognition mechanism of non-peptide antigens by human γδ T cells. Int Immunol 2003; 11: 13017.
  • 21
    Bauer S, Groh V, Wu J, Steinle A, Philipps JH, Lanier LL, Spies T. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285: 7279.
  • 22
    Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T, Bukowski JF. MICA engagement by human Vγ2Vδ2 T cells enhances their antigen-dependent effector function. Immunity 2001; 15: 839.
  • 23
    Wu J, Groh V, Spies T. T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial γδ T cells. J Immunol 2002; 169: 123640.
  • 24
    Spada FM, Grant EP, Peters PJ, Sugita M, Melián A, Leslie DS, Lee HK, van Donselar E, Hanson DA, Krensky AM, Majdic O, Porcelli SA, et al. Self recognition of CD1 by γδ T cells: implications for innate immunity. J Exp Med 2000; 191: 93748.
  • 25
    Déchanet J, Merville P, Lim A, Retière C, Pitard V, Lafarge X, Michelson S, Meric C, Hallet MM, Kourilsky P, Potaux L, Bonneville M, Moreau JF. Implication of γδ T cells in the human immune response to cytomegalovirus. J Clin Invest 1999; 103: 143749.
  • 26
    Maeurer M, Zitvogel L, Elder E, Storkus WJ, Lotze MT. Human intestinal Vδ1+ T cells obtained from patients with colon cancer respond exclusively to SEB but not to SEA. Nat Immunol 1995; 14: 18897.
  • 27
    Garcia VE, Sieling PA, Gong JH, Barnes PF, Uyemura K, Tanaka Y, Bloom BR, Morita CT, Modlin RL. Single cell analysis of γδ T cell response to nonpeptide mycobacterial antigens. J Immunol 1997; 159: 132835.
  • 28
    Wesch D, Glatzel A, Kabelitz D. Differentiation of resting human peripheral blood γδ T cells toward Th1- or Th2 phenotype. Cell Immunol 2001; 212: 1107.
  • 29
    Boismenu R, Havran WL. Modulation of epithelial cell growth by γδ T cells. Science 1994; 266: 12535.
  • 30
    Workalemahu G, Foerster M, Kroegel C. Expression and synthesis of fibroblast growth factor-9 in human γδ T-lymphocytes: response to isopentenyl pyrophosphate and TGF-β/IL-15. J Leukoc Biol 2004; 75: 65763.
  • 31
    Hayday A, Tigelaar R. Immunoregulation in the tissues by γδ T cells. Nat Rev Immunol 2003; 3: 23342.
  • 32
    Koizumi H, Liu CC, Zheng LM, Joag SV, Bayne NK, Holoshitz J, Young JD. Expression of perforin and serine esterases by human γ/δ T cells. J Exp Med 1991; 173: 499502.
  • 33
    Nakata M, Smyth MJ, Norihisa Y, Kawasaki A, Shinkai Y, Okumura K, Yagita H. Constitutive expression of pore-forming protein in peripheral blood γ/δ T cells: implication for their cytotoxic role in vivo. J Exp Med 1990; 172: 187780.
  • 34
    Nakata M, Kawasaki A, Azuma M, Tsuji K, Matsuda H, Shinkai Y, Yagita H, Okumura K. Expression of perforin and cytolytic potential of human peripheral blood lymphocyte subpopulations. Int Immunol 1992; 4: 104954.
  • 35
    Sayers TJ, Brooks AD, Ward JM, Hoshino T, Bere WE, Wiegand GW, Kelly JM, Smyth MJ, Kelley JM. The restricted expression of granzyme M in human lymphocytes. J Immunol 2001; 166: 76571.
  • 36
    Passmore JS, Glashoff RH, Lukey PT, Ress SR. Granule-dependent cytolysis of Mycobacterium tuberculosis-infected macrophages by human γδ+ T cells has no effect on intracellular mycobacterial viability. Clin Exp Immunol 2001; 126: 7683.
  • 37
    Dieli F, Troye-Blomberg M, Ivanyi J, Fournié JJ, Krensky AM, Bonneville M, Peyrat MA, Caccamo N, Sireci G, Salerno A. Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vγ9/Vδ2 T lymphocytes. J Infect Dis 2001; 184: 10825.
  • 38
    Pardo J, Perez-Galan P, Gamen S, Marzo I, Monleon I, Kaspar AA, Susin SA, Kroemer G, Krensky AM, Naval J, Anel A. A role of the mitochondrial apoptosis-inducing factor in granulysin-induced apoptosis. J Immunol 2001; 167: 12229.
  • 39
    Choudhary A, Davodeau F, Moreau A, Peyrat MA, Bonneville M, Jotereau F. Selective lysis of autologous tumor cells by recurrent γδ tumor-infiltrating lymphocytes from renal carcinoma. J Immunol 1995; 154: 393240.
  • 40
    Kobayashi H, Tanaka Y, Yagi J, Toma H, Uchiyama T. γ/δ T cells provide innate immunity against renal cell carcinoma. Cancer Immunol Immunother 2001; 50: 11524.
  • 41
    Olive C, Nicol D, Falk MC. Characterisation of γδ T cells in renal cell carcinoma patients by polymerase chain reaction analysis of T cell receptor transcripts. Cancer Immunol Immunother 1997; 44: 2734.
  • 42
    Maeurer MJ, Martin D, Walter W, Liu K, Zitvogel L, Halusczak K, Rabinowich H, Duquesnoy R, Storkus W, Lotze MT. Human intestinal Vδ1+ lymphocytes recognize tumor cells of epithelial origin. J Exp Med 1996; 183: 168196.
  • 43
    Zocchi MR, Rugarli C, Ferrarini M. Selective lysis of autologous tumor by TCSδ1+ γδ tumor infiltrating lymphocytes from human lung carcinomas. Eur J Immunol 1990; 20: 26859.
  • 44
    Ferrarini M, Heltai S, Pupa SM, Menard S, Zocchi MR. Killing of laminin receptor-positive human lung cancers by tumor infiltrating lymphocytes bearing γδ+ T-cell receptors. J Natl Cancer Inst 1996; 88: 43641.
  • 45
    Kuriyama Y, Kawanishi Y, Otawa M, Utsumi K, Ohyashiki K. Circulating and tumor-infiltrating γδ T cells in patients with B-cell lymphomas. Leuk Lymphoma 2000; 39: 3217.
  • 46
    Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, Hobby P, Sutton B, Tigelaar RE, Hayday AC. Regulation of cutaneous malignancy by γδ T cells. Science 2001; 294: 6059.
  • 47
    Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH, Craft J, Yin Z. γδ T cells provide an early source of interferon γ in tumor immunity. J Exp Med 2003; 198: 43342.
  • 48
    Street SEA, Hayakawa Y, Zhan Y, Lew AM, MacGregor D, Jamieson AM, Diefenbach A, Yagita H, Godfrey DI, Smyth MJ. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and γδ T cells. J Exp Med 2004; 199: 87984.
  • 49
    Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc Natl Acad Sci U S A 1999; 96: 687984.
  • 50
    Fisch P, Moris A, Rammensee HG, Handgretinger R. Inhibitory MHC class I receptors on γδ T cells in tumour immunity and autoimmunity. Trends Immunol 2000; 21: 18791.
  • 51
    Qi J, Zhang J, Zhang S, Cui L, He W. Immobilized MICA could expand human Vδ1 γδ T cells in vitro that displayed major histocompatibility complex class I chain-related A-dependent cytotoxicity to human epithelial carcinomas. Scand J Immunol 2003; 58: 21120.
  • 52
    Laad AD, Thomas ML, Fakih AR, Chiplunkar SV. Human γδ T cells recognize heat shock protein-60 on oral tumor cells. Int J Cancer 1999; 80: 70914.
  • 53
    Thomas ML, Samant UC, Deshpande RK, Chiplunkar SV. γδ T cells lyse autologous and allogeneic oesophageal tumours : involvement of heat-shock proteins in the tumor cell lysis. Cancer Immunol Immunother 2000; 48: 6539.
  • 54
    Fisch P, Malkovsky M, Kovats S, Sturm E, Braakman E, Klein BS, Voss SD, Morissey LW, DeMars R, Welch WJ, Bolhuis RLH, Sondel PM. Recognition by human Vγ9/Vδ2 T cells of a GroEL homolog on Daudi Burkitt's lymphoma cells. Science 1990; 250: 126973.
  • 55
    Gober HJ, Kistowska M, Angman L, Jenö P, Mori L, De Libero G. Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 2003; 197: 1638.
  • 56
    Schnurr M, Scholz C, Rothenfusser S, Galambos P, Dauer M, Robe J, Endres S, Eigler A. Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and γδ T cells. Cancer Res 2002; 62: 234752.
  • 57
    Bankert RB, Egilmez NK, Hess SD. Human-SCID mouse chimeric models for the evaluation of anti-cancer therapies. Trends Immunol 2001; 22: 38693.
  • 58
    Malkovska V, Cigel FK, Armstrong N, Storere B, Hong R. Antilymphoma activity of human γδ T-cells in mice with severe combined immune deficiency. Cancer Res 1992; 52: 56106.
  • 59
    Zheng BJ, Chan KW, Im S, Chua D, Sham JST, Tin PC, He ZM, Ng MH. Anti-tumor effects of human peripheral γδ T cells in a mouse tumor model. Int J Cancer 2001; 92: 4215.
  • 60
    Lozupone F, Pende D, Burgio VL, Castelli C, Spada M, Venditti M, Luciani F, Lugini L, Federici C, Ramoni C, Rivoltini L, Parmiani G, et al. Effect of human natural killer and γδ T cells on the growth of human autologous melanoma xenograft in SCID mice. Cancer Res 2004; 64: 37885.
  • 61
    Sireci G, Espinosa E, Di Santo C, Dieli F, Fournié JJ, Salerno A. Differential activation of human γδ cells by nonpeptide phosphoantigens. Eur J Immunol 2001; 31: 162835.
  • 62
    Sicard H, Al Saati T, Delsol G, Fourniè JJ. Synthetic phosphoantigens enhance human Vγ9Vδ2 T lymphocytes killing of non-Hodgkin's lymphoma. Mol Med 2001; 7: 71122.
  • 63
    Kato Y, Tanaka Y, Miyagawa F, Yamashita S, Minato N. Targeting of tumor cells for human γδ T cells by nonpeptide antigens. J Immunol 2001; 167: 509298.
  • 64
    Kunzmann V, Bauer E, Wilhelm M. γ/δ T-cell stimulation by pamidronate [letter]. N Engl J Med 1999; 340: 7378.
  • 65
    Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M. Stimulation of γδ T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000; 96: 38492.
  • 66
    Das H, Wang L, Kamath A, Bukowski JF. Vγ2Vδ2 T-cell receptor-mediated recognition of aminobisphosphonates. Blood 2001; 98: 16168.
  • 67
    Miyagawa F, Tanaka Y, Yamashita S, Minato N. Essential requirement of antigen presentation by monocyte lineage cells for the activation of primary human γδ T cells by aminobisphosphonate antigen. J Immunol 2001; 166: 550814.
  • 68
    Bergstrom JD, Bostedor RG, Masarachia PJ, Reszka AA, Rodan G. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys 2000; 373: 23141.
  • 69
    Dunford JE, Thompson K, Coxon FP, Luckman SP, Hahn FM, Poulter CD, Ebetino FH, Rogers MJ. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone-resorption in vivo by nitrogen-containing bisphosphonates. Exp Ther 2001; 96: 23542.
  • 70
    Tanaka Y, Morita C, Nieves E, Brenner M, Bloom B. Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature 1995; 375: 1558.
  • 71
    Fleisch HA. Bisphosphonates: preclinical aspects and use in osteoporosis. Ann Med 1997; 29: 5562.
  • 72
    Body JJ, Bart R, Burckhardt P, Delmas PD, Diel IJ, Fleisch H, Kanis JA, Kyle RA, Mundy GR, Paterson AH, Rubens RD. Current use of bisphosphonates in oncology: International Bone and Cancer Study Group. J Clin Oncol 1998; 16: 38909.
  • 73
    Green JR. Antitumor effects of bisphosphonates. Cancer 2003; 97: 8407.
  • 74
    Pechhold K, Wesch D, Schondelmaier S, Kabelitz D. Primary activation of Vγ9 expressing γδ T cells by mycobacterium tuberculosis: requirement for Th1-type CD4 T cell help and inhibition by interleukin-10. J Immunol 1994; 152: 498492.
  • 75
    Yang JC, Sherry RM, Steinerg SM, Topalian SL, Schwartzentruber DJ, Hwu P, Seipp CA, Rogers-Freezer L, Morton KE, White DE, Liewehr DJ, Merino MJ, et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J Clin Oncol 2003; 15: 312732.
  • 76
    Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T, Tony HP. γδ T cells for immune therapy of patients with lymphoid malignancy. Blood 2003; 102: 2006.
  • 77
    Dieli F, Gebbia N, Poccia F, Caccamo N, Montesano C, Fulfaro F, Arcara C, Valerio MR, Meraviglia S, Di Sano C, Sireci G, Salerno A. Induction of γδ T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo [letter] Blood 2003; 102: 23101.
  • 78
    Lopez RD. Human γδ-T cells in adoptive immunotherapy of malignant and infectious diseases. Immunol Res 2002; 26: 20721.