Recombinant modified vaccinia Ankara primes functionally activated CTL specific for a melanoma tumor antigen epitope in melanoma patients with a high risk of disease recurrence



Recombinant plasmid DNA and attenuated poxviruses are under development as cancer and infectious disease vaccines. We present the results of a phase I clinical trial of recombinant plasmid DNA and modified vaccinia Ankara (MVA), both encoding 7 melanoma tumor antigen cytotoxic T lymphocyte (CTL) epitopes. HLA-A*0201-positive patients with surgically treated melanoma received either a “prime-boost” DNA/MVA or a homologous MVA-only regimen. Ex vivo tetramer analysis, performed at multiple time points, provided detailed kinetics of vaccine-driven CTL responses specific for the high-affinity melan-A26, 27, 28, 29, 30, 31, 32, 33, 34, 35 analogue epitope. Melan-A26-35-specific CTL were generated in 2/6 patients who received DNA/MVA (detectable only after the first MVA injection) and 4/7 patients who received MVA only. Ex vivo ELISPOT analysis and in vitro proliferation assays confirmed the effector function of these CTL. Responses were seen in smallpox-vaccinated as well as vaccinia-naïve patients, as defined by anti-vaccinia antibody responses demonstrated by ELISA assay. The observations that 1) CTL responses were generated to only 1 of the recombinant epitopes and 2) that the magnitude of these responses (0.029–0.19% CD8+ T cells) was below the levels usually seen in acute viral infections suggest that to ensure high numbers of CTL specific for multiple recombinant epitopes, a deeper understanding of the interplay between CTL responses specific for the viral vector and recombinant epitopes is required.