• 1
    Waterhouse JAH MC, CoRrea P, Powell J. Cancer incidence in five continents. vol. IV. Lyon: IARC, No. 42, 1982.
  • 2
    Munoz N, Bosch X. Epidemiology of hepatocellular carcinoma. In: OkudaK, IshakKG, eds. Neoplasms of the liver. Tokyo: Springer Verlag, 1987.
  • 3
    Okuda K, Obata H, Nakajima Y, Ohtsuki T, Okazaki N, Ohnishi K. Prognosis of primary hepatocellular carcinoma. Hepatology 1984; 4( Suppl): 3S6S.
  • 4
    Sasaki Y, Imaoka S, Masutani S, Ohashi I, Ishikawa O, Koyama H, Iwanaga T. Influence of coexisting cirrhosis on long-term prognosis after surgery in patients with hepatocellular carcinoma. Surgery 1992; 112: 51521.
  • 5
    Guan XY, Fang Y, Sham JS, Kwong DL, Zhang Y, Liang Q, Li H, Zhou H, Trent JM. Recurrent chromosome alterations in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosomes Cancer 2000; 29: 1106.
  • 6
    Kitay-Cohen Y, Amiel A, Ashur Y, Fejgin MD, Herishanu Y, Afanasyev F, Bomstein Y, Lishner M. Analysis of chromosomal aberrations in large hepatocellular carcinomas by comparative genomic hybridization. Cancer Genet Cytogenet 2001; 131: 604.
  • 7
    Wong N, Lai P, Lee SW, Fan S, Pang E, Liew CT, Sheng Z, Lau JW, Johnson PJ. Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis: relationship to disease stage, tumor size, and cirrhosis. Am J Pathol 1999; 154: 3743.
  • 8
    Marchio A, Meddeb M, Pineau P, Danglot G, Tiollais P, Bernheim A, Dejean A. Recurrent chromosomal abnormalities in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosomes Cancer 1997; 18: 5965.
  • 9
    Niketeghad F, Decker HJ, Caselmann WH, Lund P, Geissler F, Dienes HP, Schirmacher P. Frequent genomic imbalances suggest commonly altered tumour genes in human hepatocarcinogenesis. Br J Cancer 2001; 85: 697704.
  • 10
    Rao UN, Gollin SM, Beaves S, Cieply K, Nalesnik M, Michalopoulos GK. Comparative genomic hybridization of hepatocellular carcinoma: correlation with fluorescence in situ hybridization in paraffin-embedded tissue. Mol Diagn 2001; 6: 2737.
  • 11
    Wong N, Lai P, Pang E, Leung TW, Lau JW, Johnson PJ. A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping. Hepatology 2000; 32: 10608.
  • 12
    Zhang LH, Qin LX, Ma ZC, Ye SL, Liu YK, Ye QH, Wu X, Huang W, Tang ZY. Allelic imbalance regions on chromosomes 8p, 17p and 19p related to metastasis of hepatocellular carcinoma: comparison between matched primary and metastatic lesions in 22 patients by genome-wide microsatellite analysis. J Cancer Res Clin Oncol 2003; 129: 27986.
  • 13
    Okabe H, Ikai I, Matsuo K, Satoh S, Momoi H, Kamikawa T, Katsura N, Nishitai R, Takeyama O, Fukumoto M, Yamaoka Y. Comprehensive allelotype study of hepatocellular carcinoma: potential differences in pathways to hepatocellular carcinoma between hepatitis B virus-positive and -negative tumors. Hepatology 2000; 31: 10739.
  • 14
    Wong N, Pang E, Tam J, Lau J, Johnson P. A novel hepatocellular carcinoma cell line harboring de novo hepatitis C virus. American Association for Cancer Research Annual Meeting, San Francisco, 2000. No. 481.
  • 15
    Pang E, Wong N, Lai PB, To KF, Lau WY, Johnson PJ. Consistent chromosome 10 rearrangements in four newly established human hepatocellular carcinoma cell lines. Genes Chromosomes Cancer 2002; 33: 1509.
  • 16
    Pang E, Wong N, Lai PB, To KF, Lau JW, Johnson PJ. A comprehensive karyotypic analysis on a newly developed hepatocellular carcinoma cell line, HKCI-1, by spectral karyotyping and comparative genomic hybridization. Cancer Genet Cytogenet 2000; 121: 916.
  • 17
    Fleming ID. AJCC cancer staging manual, 5th ed. Philadelphia: Lippincott-Raven, 1997.
  • 18
    Schröck E, Veldman T, Padilla-Nash H, Ning Y, Spurbeck J, Jalal S, Shaffer LG, Papenhausen P, Kozma C, Phelan MC, Kjeldsen E, Schonberg SA, et al. Spectral karyotyping refines cytogenetic diagnostics of constitutional chromosomal abnormalities. Hum Genet 1997; 101: 25562.
  • 19
    Mitelman FE. ISCN: an international system for human cytogenetic nomenclature. Basel: S. Karger, 1995. p. 1421.
  • 20
    Wong N, Chan A, Lee SW, Lam E, To KF, Lai PB, Li XN, Liew CT, Johnson PJ. Positional mapping for amplified DNA sequences on 1q21-q22 in hepatocellular carcinoma indicates candidate genes over-expression. J Hepatol 2003; 38: 298306.
  • 21
    Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L. The case for early detection. Nat Rev Cancer 2003; 3: 24352.
  • 22
    Kuhn EM, Therman E, Denniston C. Mitotic chiasmata, gene density, and oncogenes. Hum Genet 1985; 70: 15.
  • 23
    Nakau M, Miyoshi H, Seldin MF, Imamura M, Oshima M, Taketo MM. Hepatocellular carcinoma caused by loss of heterozygosity in Lkb1 gene knockout mice. Cancer Res 2002; 62: 454953.
  • 24
    Kim CJ, Cho YG, Park JY, Kim TY, Lee JH, Kim HS, Lee JW, Song YH, Nam SW, Lee SH, Yoo NJ, Lee JY, et al. Genetic analysis of the LKB1/STK11 gene in hepatocellular carcinomas. Eur J Cancer 2004; 40: 13641.
  • 25
    Leach RJ, Reus BE, Hundley JE, Johnson-Pais TL, Windle JJ. Confirmation of the assignment of the human tartrate-resistant acid phosphatase gene (ACP5) to chromosome 19. Genomics 1994; 19: 1801.
  • 26
    Drexler HG, Gignac SM. Characterization and expression of tartrate-resistant acid phosphatase (TRAP) in hematopoietic cells. Leukemia 1994; 8: 35968.
  • 27
    Lord DK, Cross NC, Bevilacqua MA, Rider SH, Gorman PA, Groves AV, Moss DW, Sheer D, Cox TM. Type 5 acid phosphatase. Sequence, expression and chromosomal localization of a differentiation-associated protein of the human macrophage. Eur J Biochem 1990; 189: 28793.
  • 28
    Cassady AI, King AG, Cross NC, Hume DA. Isolation and characterization of the genes encoding mouse and human type-5 acid phosphatase. Gene 1993; 130: 2017.
  • 29
    Igarashi Y, Lee MY, Matsuzaki S. Acid phosphatases as markers of bone metabolism. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781: 34558.
  • 30
    Uchida T, Miyata H, Shikata T. Human hepatocellular carcinoma and putative precancerous disorders: their enzyme histochemical study. Arch Pathol Lab Med 1981; 105: 1806.
  • 31
    Koizumi M, Takahashi S, Ogata E. Bone metabolic markers in bisphosphonate therapy for skeletal metastases in patients with breast cancer. Breast Cancer 2003; 10: 217.
  • 32
    Suter A, Everts V, Boyde A, Jones SJ, Lullmann-Rauch R, Hartmann D, Hayman AR, Cox TM, Evans MJ, Meister T, von Figura K, Saftig P. Overlapping functions of lysosomal acid phosphatase (LAP) and tartrate-resistant acid phosphatase (Acp5) revealed by doubly deficient mice. Development 2001; 128: 4899910.
  • 33
    Yeatman TJ, Chambers AF. Osteopontin and colon cancer progression. Clin Exp Metastasis 2003; 20: 8590.
  • 34
    Le QT, Sutphin PD, Raychaudhuri S, Yu SC, Terris DJ, Lin HS, Lum B, Pinto HA, Koong AC, Giaccia AJ. Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res 2003; 9: 5967.
  • 35
    Gotoh M, Sakamoto M, Kanetaka K, Chuuma M, Hirohashi S. Overexpression of osteopontin in hepatocellular carcinoma. Pathol Int 2002; 52: 1924.
  • 36
    Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, Simon R, Li Y, Robles AI, Chen Y, Ma ZC, Wu ZQ, et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 2003; 9: 41623.
  • 37
    Wunderle VM, Critcher R, Hastie N, Goodfellow PN, Schedl A. Deletion of long-range regulatory elements upstream of SOX9 causes camptomelic dysplasia. Proc Natl Acad Sci USA 1998; 95: 1064954.
  • 38
    Fantes J, Redeker B, Breen M, Boyle S, Brown J, Fletcher J, Jones S, Bickmore W, Fukushima Y, Mannens M. Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype. Hum Mol Genet 1995; 4: 41522.