SEARCH

SEARCH BY CITATION

References

  • 1
    Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 1998; 2: 599606
  • 2
    Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioassays 1998; 20: 61526.
  • 3
    Bugaut M, Bentejac M. Biological effects of short-chain fatty acids in nonruminant mammals. Annu Rev Nutr 1993; 13: 21741.
  • 4
    Cummings JH. Short chain fatty acids in the human colon. Gut 1981; 22: 76379.
  • 5
    Mann KK, Rephaeli A, Colosimo AL, Diaz Z, Nudelman A, Levovich I, Jing Y, Waxman S, Miller WHJr. A retinoid/butyric acid prodrug overcomes retinoic acid resistance in leukemias by induction of apoptosis. Mol Cancer Res 2003; 1: 90312.
  • 6
    Nakata S1, Yoshida T, Horinaka M, Shiraishi T, Wakada M, Sakai T. Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene 2004; 111.
  • 7
    Medina V, Edmonds B, Young GP, James R, Appleton S, Zalewski PD. Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res 1997; 57: 3697707.
  • 8
    Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, Marks PA. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci U S A 1998; 95: 30037.
  • 9
    Wang J, Saunthararajah Y, Redner RL, Liu JM. Inhibitors of histone deacetylase relieve ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells. Cancer Res 1999; 59: 27669.
  • 10
    Butler LM, Agus DB, Scher HI, Higgins B, Rose A, Cordon-Cardo C, Thaler HT, Rifkind RA, Marks PA, Richon VM. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 2000; 60: 516570.
  • 11
    Chai F, Evdokiou A, Young GP, Zalewski PD. Involvement of p21(Waf1/Cip1) and its cleavage by DEVD-caspase during apoptosis of colorectal cancer cells induced by butyrate. Carcinogenesis 2000; 21: 714.
  • 12
    Siavoshian S, Segain JP, Kornprobst M, Bonnet C, Cherbut C, Galmiche JP, Blottiere HM. Butyrate and trichostatin A effects on the proliferation/differentiation of human intestinal epithelial cells: induction of cyclin D3 and p21 expression. Gut 2000; 46: 50714.
  • 13
    Iacomino G, Tecce MF, Grimaldi M, Tosto C, Russo GL. Transcriptional response of a human colon adenocarcinoma cell line to sodium butyrate. Biochem Biophys Res Commun 2001; 285: 12809.
  • 14
    Xiao H, Hasegawa T, Miyaishi O, Ohkusu K, Isobe K. Sodium butyrate induces NIH3T3 cells to senescence-like state and enhances promoter activity of p21WAF/CIP1 in p53-independent manner. Biochem Biophys Res Commun 1997; 237: 45760.
  • 15
    Pellizzaro C, Coradini D, Daniotti A, Abola G, Daidone MG. Modulation of cell cycle-related protein expression by sodium butyrate in human non-small cell lung cancer cell lines. Int J Cancer 2001; 91: 6547.
  • 16
    Lallemand F, Courilleau D, Sabbah M, Redeuilh G, Mester J. Direct inhibition of the expression of cyclin D1 gene by sodium butyrate. Biochem Biophys Res Commun 1996; 229: 1639.
  • 17
    Charollais RH, Buquet C, Mester J. Butyrate blocks the accumulation of CDC2 mRNA in late G1 phase but inhibits both the early and late G1 progression in chemically transformed mouse fibroblasts BP-A31. J Cell Physiol 1990; 145: 4652.
  • 18
    Clarke KO, Feinman R, Harrison LE. Tributyrin, an oral butyrate analogue, induces apoptosis through the activation of caspase-3. Cancer Lett 2001; 171: 5765.
  • 19
    Ranganna K, Yatsu FM, Hayes BE, Milton SG, Jayakumar A. Butyrate inhibits proliferation-induced proliferating cell nuclear antigen expression (PCNA) in rat vascular smooth muscle cells. Mol Cell Biochem 2000; 205: 14961.
  • 20
    Blagosklonny MV, Robey R, Sackett DL, Du L, Traganos F, Darzynkiewicz Z, Fojo T, Bates SE. Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol Cancer Ther 2002; 1: 93741.
  • 21
    Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 2002; 21: 623645.
  • 22
    Sambucetti LC, Fischer DD, Zabludoff S, Kwon PO, Chamberlin H, Trogani N, Xu H, Cohen D. Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J Biol Chem 1999; 274: 349407.
  • 23
    Juan LJ, Shia WJ, Chen MH, Yang WM, Seto E, Lin YS, Wu CW. Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem 2000; 275: 2043643.
  • 24
    Kim MS, Kwon HJ, Lee YM, Baek JH, Jang JE, Lee SW, Moon EJ, Kim HS, Lee SK, Chung HY, Kim CW, Kim KW. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 2001; 7: 43743.
  • 25
    Henderson C, Mizzau M, Paroni G, Maestro R, Schneider C, Brancolini C. Role of caspases, Bid, p53 in the apoptotic response triggered by the Histone deacetylases inhibitor trichostain- A (TSA) and suberoxylanilide hydroxamic acid (SAHA). J Biol Chem 2003; 278: 1257989.
  • 26
    Vrana JA, Decker RH, Johnson CR, Wang Z, Jarvis WD, Richon VM, Ehinger M, Fisher PB, Grant S. Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL,c-Jun, and p21CIP1, but independent of p53. Oncogene 1999; 18: 701625.
  • 27
    Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R, Smyth MJ, Johnstone RW. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci U S A 2001; 98: 108338.
  • 28
    Zhu WG, Lakshmanan RR, Beal MD, Otterson GA. DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res 2001; 61: 132733.
  • 29
    Das S, El-Deiry WS, Somasundaram K. Regulation of the p53 homolog p73 by adenoviral oncogene E1A. J Biol Chem 2003; 278: 1831320.
  • 30
    Das S, El-Deiry WS, Somasundaram K. Efficient growth inhibition of HPV 16 E6-expressing cells by an adenovirus-expressing p53 homologue p73beta. Oncogene 2003; 22: 8394402.
  • 31
    Somasundaram K, MacLachlan TK, Burns TF, Sgagias M, Cowan KH, Weber BL, El-Deiry WS. BRCA1 signals ARF-dependent stabilization and coactivation of p53. Oncogene 1999; 18: 660514.
  • 32
    Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998; 282: 1497501.
  • 33
    Prabhu NS, Somasundaram K, Satyamoorthy K, Herlyn M, El-Deiry WS. p73beta, unlike p53, suppresses growth and induces apoptosis of human papillomavirus E6-expressing cancer cells. Int J Oncol 1999; 13: 59.
  • 34
    Wu GS, El-Deiry WS. Apoptotic death of tumor cells correlates with chemosensitivity, independent of p53 or bcl-2. Clin Cancer Res 1996; 2: 62333.
  • 35
    Takimoto R, MacLachlan TK, Dicker DT, Niitsu Y, Mori T, El-Deiry WS. Can Biol Ther 2002; 1: 177186.
  • 36
    Somasundaram K, Das S, Lakhotia S, Wajapeyee N. Analysis of gene promoter regulation by tumor suppressor genes. In:Methods in molecular biology, vol. II. El-DeiryWS, ed. Totowa, NJ: Humana Press, 2003. vol. 223, 10116.
  • 37
    Joseph J, Mudduluru G, Antony S, Vashistha S, Ajitkumar P, Somasundaram K. Expression profiling of sodium butyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB. Oncogene 2004; 23: 630415.
  • 38
    Wajapeyee N, Somasundaram K. Cell cycle arrest and apoptosis induction by activator protein 2alpha (AP-2alpha) and the role of p53 and p21WAF1/CIP1 in AP-2alpha-mediated growth inhibition. J Biol Chem 2003; 278: 52093101.
  • 39
    El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 81725.
  • 40
    Kern SE, Pietenpol JA, Thiagalingam S, Seymour S, Kinzler KW, Vogelstein B. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 1992; 256: 82730.
  • 41
    Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997; 90: 595606.
  • 42
    Palmero I, Pantoja C, Serrano M. p19ARF links the tumour suppressor p53 to Ras. Nature 1998; 395: 1256.
  • 43
    de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV, Prives C Roussel MF, Sherr CH, Lowe SW. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 1998; 12: 43442.
  • 44
    Zindy F, Eischen DH, Randle DH, Kamijo T, Cleveland JL, Sherr CR, Roussel MF. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 1998; 12: 242433.
  • 45
    Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL, Vousden KH. p14ARF links tumor suppressors RB and p53. Nature 1998; 395: 1245.
  • 46
    Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998; 17: 500114.
  • 47
    Storey A, Thomas M, Kalita A, Harwood C, Gardiol D, Mantovani F, Breuer J, Leigh IM, Matlashewski G, Banks L. Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature 1998; 393: 22934.
  • 48
    Lechner MA, Laimins LA. Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J Virol 1994; 68: 426273.
  • 49
    Beer-Romero P, Glass S, Rolfe M. Antisense targeting of E6AP elevates p53 in HPV-infected cells but not in normal cells. Oncogene 1997; 14: 595602.
  • 50
    Lai SL, Perng RP, Hwang J. p53 gene status modulates the chemosensitivity of non-small cell lung cancer cells. J Biomed Sci 2000; 7: 6470.
  • 51
    Giannakakou P, Robey R, Fojo T, Blagosklonny MV. Low concentrations of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity. Oncogene 2001; 20: 380612.
  • 52
    Levine AJ. Cell p53, the cellular gatekeeper for growth and division 1997; 88: 32331.
  • 53
    Lallemand F, Courilleau D, Buquet-Fagot C, Atfi A, Montagne MN, Mester J. Sodium butyrate induces G2 arrest in the human breast cancer cells MDA-MB-231 and renders them competent for DNA rereplication. Exp Cell Res 1999; 247: 43240.
  • 54
    Noh EJ, Lee JS. Functional interplay between modulation of histone deacetylase activity and its regulatory role in G2-M transition. Biochem Biophys Res Commun 2003; 310: 26773.
  • 55
    Harrison LE, Wang QM, Studzinki GM. Butyrate-induced G2/M block in Caco-2 colon cancer cells is associated with decreased p34cdc2 activity. Proc Soc Exp Biol Med 1999; 222: 1506.
  • 56
    Chen Z, Clark S, Birkeland M, Sung CM, Lago A, Liu R, Kirkpatrick R, Johanson K, Winkler JD, Hu E. Induction and superinduction of growth arrest and DNA damage gene 45 (GADD45) alpha and beta messenger RNAs by histone deacetylase inhibitors trichostatin A (TSA) and butyrate in SW620 human colon carcinoma cells. Cancer Lett 2002; 188: 27140.
  • 57
    Agarwal ML, Agarwal A, Taylor WR, Stark GR. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci U S A 1995; 92: 84937.
  • 58
    Stewart N, Hicks GG, Parakevas F, Mowat M. Evidence for a second cell cycle block at G2/M by p53. Oncogene 1995; 10: 10915.
  • 59
    Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC, Fornace AJJr. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 1999; 18; 2892900.
  • 60
    Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, Kinzler KW, Vogelstein B. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1997; 1: 311.
  • 61
    Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999; 15: 26990.
  • 62
    Kurita-Ochiat T, Ochiai K, Ukushima KI. Butyric acid-induced T-cell apoptosis is mediated by Caspase-8 and -9 activation in a Fas-independent manner. Clin Diag Lab Immunol 2001; 8: 32532.
  • 63
    Somasundaram K, El-Deiry WS. Tumor suppressor p53: regulation and function. Frontiers Biosci 2000; 5: 42437.