• 1
    Jamel A, Tiwari RC, Murray T, Gafoor A, Samuels A, Ward E, Feur EJ, Thun M. Cancer statistics 2004. Cancer J Clin 2004; 54: 829.
  • 2
    van Brussel JP, Mickinsch GH. Multidrug resistance in prostate cancer. Onkologie 2003; 26: 17581.
  • 3
    Hazelhurst LA, Landowski TH, Dalton WS. Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death. Onocogene 2003; 22: 7396402.
  • 4
    Patel VA, Dunn MJ, Sorokin A. Regulation of MDR-1 (P-glycoprotein) by cyclooxygenase-2. J Biol Chem 2002; 277: 3891520.
  • 5
    De Marzo AM, Meeker AK, Zha S, Luo J, Nakayama M, Platz EA, Isaacs WB, Nelson WG. Human prostate cancer precursors and pathobiology. Urology 2003; 62: 5562.
  • 6
    Tang, X, Sun YJ, Half E, Kuo MT, Sinicrope F. Cyclooxygenase-2 overexpression inhibits death receptor 5 expression and confers resistance to tumor necrosis factor-related apoptosis-inducing in human colon cancer cells. Cancer Res 2002; 62: 49038.
  • 7
    Sun Y, Tang XM, Half E, Kuo MT, Sinicrope FA. Cylcloxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res 2002; 6: 63238.
  • 8
    Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Puete LBA, Lipsky PE. Cyclooxygenase in biology and disease. FASEB J 1998; 12: 106373.
  • 9
    Mead JF, Alfin-Slater RB, Howton DR, Popjak G. Prostaglandins, thromboxanes, and prostacyclin: lipids—chemistry, biochemistry, and nutrition. New York: Plenum Press, 1986. 149216.
  • 10
    Dempke W, Rie C, Grothey A, Schmoll HJ. Cyclooxygenase-2: a novel target for cancer chemotherapy. J Cancer Res Clin Oncol 2001; 127: 4117.
  • 11
    Baich CM, Doghert PA, Cloud GA. Prostaglandin E2-mediated suppression of cellular immunity in colon cancer patients. Surgery 1984; 95: 717.
  • 12
    Fosslien E. Molecular pathology of cyclooxygenase-2 in neoplasia and xenobiotic oxidation. Ann Clin Lab Sci 2000; 30: 321.
  • 13
    Gupta S, Srivastava M, Ahmad N. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 2000; 42: 738.
  • 14
    Tsuji M, Kawano S, Tsuji S, Sawaoka H, Hori M, Dubois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 1998; 93: 70516.
  • 15
    Zha S, Gage WR, Suvageot J, Saria EA, Putzi MJ, Ewing CM, Faith DA, Nelson WG, De Marzo AM, Isaacs WB. Cyclooxygenase-2 is up regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res 2001; 61: 861723.
  • 16
    Subbarayan V, Sabichi AL, Llansa N, Lippman SM, Menter DG. Differential expression of cyclooxygenase-2 and its regulation by tumor necrosis factor-alpha in normal and malignant prostate cells. Cancer Res 2001; 61: 27206.
  • 17
    Madaan S, Abel PD, Chaudhary KS, Hewitt R, Stott MA, Stamp GWH, Lalani EN. Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: implications for prevention and treatment. Br J Urol Internatl 2000; 86: 73641.
  • 18
    Uotila P, Valve E, Martikaninen P, Nevalainen M, Nurmi M, Harkonen P. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol Res 2001; 29: 258.
  • 19
    Kirschenbaum A, Liu XH, Yao S, Levine AC. The role of cyclooxygenase-2 in prostate cancer. Urology 2001; 58: 12731.
  • 20
    Hussain T, Gupta S, Mukhtar H. Cyclooxygenase-2 in prostate carcinogenesis. Cancer Lett 2003; 191: 12535.
  • 21
    Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 2000; 275: 11397403.
  • 22
    Zhu B, Block N, Lokeshwar BL. Interaction between stromal cells and tumor cells induces chemoresistance and matrix metalloproteinase secretion. Ann NY Acad Sci 1999; 878: 6426.
  • 23
    van Brussel JP, van Steenbrugge GJ, Romijin JC, Shcroder FM, Mickisch GH. Chemosensitivity of prostate cancer cells lines and expression of multidrug resistance related proteins. Eur J Cancer 1999; 35: 66471.
  • 24
    Hayward SW, Rosen MA, Cunha GR. Stromal-epithelia interactions in the normal and neoplastic prostate. Br J Urol 1997; 79: 1826.
  • 25
    Pinski J, Parikh A, Bova GS, Isaacs JT. Therapeutic implications of enhanced G(0)/G(1) checkpoint control induced by coculture of prostate cancer cells with osteoblasts. Cancer Res 2001; 61: 63726.
  • 26
    Sausville EA. The challenge of pathway and environment-mediated drug resistance. Cancer Metastasis Rev 2001; 20: 11722.
  • 27
    Sokoloff MH, Tso CL, Kaboo R, Taneja S, Pang S, deKernion JB, Belldegrun AS. In vitro modulation of tumor progression-associated properties of hormone refractory prostate carcinoma cell lines by cytokines. Cancer 1996; 77: 186272.
  • 28
    Lokeshwar BL, Dandekar DS, Lopez M. Synergistic increase in efficacy of an antimetastatic drug (COL-3) combines with an anti-inflammatory drug (celecoxib) in prostate cancer. Washington,DC: Proceedings from the 94th Annual Meeting, 2003.
  • 29
    Lokeshwar BL, Prabhakar KR, Shang TY, Mourelatos Z, Li DQ. Anticancer drug induced cells are modulated by organ specific stromal cell factors. Sci World J 2001; 1: 59.
  • 30
    Srinivasu MK, Narayana CL, Roa DS, Reddy GO. A Validated LC method for quantitative determination of celecoxib in pharmaceutical dosage forms and purity evaluation in bulk drugs. J Pharm Biomed Anal 2000; 22: 94956.
  • 31
    Lokeshwar BL, Houston-Clark HL, Selzer MG, Block NL, Golub LM. Potential application of a chemically modified non-antimicrobial tetracycline (COL-3) against metastatic prostate cancer. Adv Dent Res 1998; 12: 97102.
  • 32
    Lokeshwar BL, Selzer M, Zhu BQ, Block N, Golub LM. Inhibition of cell proliferation,invasion tumor growth and metastasis by an oral non antimicrobial tetracycline analog (Col-3) in a metastatic prostate cancer model. Int J Cancer 2002; 98: 297309.
  • 33
    Wang M, Stearns ME. Isolation and characterization of PC-3 human prostatic tumor sublines which preferentially metastasize to select organs in S.C.I.D. mice. Differentiation 1991; 48: 11525.
  • 34
    Subramaniam M, Jalal SM, Rickard DJ, Harris SA, Bolander ME. Further characterization of human fetal osteoblastic hFOB 1.19 and hFOB/ER alpha cells: bone formation in vivo and karyotype analysis using multicolor fluorescent in situ hybridization. J Cell Biochem 2002; 87: 915.
  • 35
    Dandekar DS, Lokeshwar VB, Cevallos-Arellano E, Soloway M, Lokeshwar BL. An orally active Amazonian plant extract (BIRM) inhibits prostate cancer growth and metastasis. Cancer Chemother Pharmacol 2003; 52: 5966.
  • 36
    Ferrandina G, Lauriola L, Zannoni GF, Fagotti A, Fanfani F, Legge F, Maggiano N, Gessi M, Mancuso S, Ranelletti FO, Scambia G. Increased cyclooxygenase-2 (COX-2) expression is associated with chemotherapy resistance and outcome in ovarian cancer patients. Ann Oncol 2002; 13: 120511.
  • 37
    Ferrandina G, Lauriola L, Distefano MG, Zannoni GF, Gessi M, Legge F, Maggiano N, Mancuso S, Capelli A, Scambia G, Ranelletti FO. Increased cylcooxygenase-2 expression is associated with chemotherapy resistance and poor survival in cervical cancer patients. J Clinc Oncol 2002; 20: 97381.
  • 38
    Ferrandina G, Legge F, Ranelletti FO, Zannoni GF, Maggiano Evangelisti A, Mancuso S, Scambia G, Lauriola L. Cyclooxygenase-2 expression in endometrial carcinoma: correlation with clinicopathologic parameters and clinical outcome. Cancer 2002; 95: 8017.
  • 39
    Kulp SK, Yang YT, Hung CC, Chen KF, Lai JP, Tseng PH, Fowble JW, Ward PJ, Chen CS. 3-phospoinositide-dependent protein kinase-1/AKT signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer. Cancer Res 2004; 64: 14451.
  • 40
    Nomura T, Mimata H, Takeuchi Y, Yamamoto H, Miyamoto E, Nomura Y. The X-linked inhibitor of apoptosis protein inhibits taxol-induced apoptosis in LNCaP cells. Urol Res 2003; 31: 3744.
  • 41
    Narayanan BA, Condon MS, Bosland MC, Narayanan NK, Reddy BS. Suppression of N-methyl-N-nitrosourea/testosterone-induced rat prostate cancer growth by celecoxib: effects on cyclooxygenase-2,cell cycle, regulation, and apoptosis mechanism. Clin Cancer Res 2003; 9: 350315.
  • 42
    Grosch S, Tegeder I, Niederberger E, Brautigam L, Geisslinger G. COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J 2001; 15: 27424.
  • 43
    Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 1997; 94: 333640.
  • 44
    Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004; 4: 25365.
  • 45
    Fridman R, Giaconne G, Kanemoto T, Martin GR, Gazdar AF, Mulshine J. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung carcinoma cell lines. Proc Natl Acad Sci USA 1990; 87: 6698702.
  • 46
    Hazlehurst LA, Landowski TH, Dalton WS. Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death. Oncogene 2003; 22: 7396402.
  • 47
    Donelli MG, Russo R, Garrattinin S. Selective chemotherapy in relation to the site of tumor transplantation. Int J Cancer 1975; 32: 7886.
  • 48
    Teicher BA, Herman TS, Holden SA, Wang YY, Pfeffer MR, Crawford JW. Tumor resistance to alkylating agents conferred by mechanisms present only in vivo. Science 1990; 247: 145761.
  • 49
    Duffy CP, Elliott CJ, O'Connor RA, Heenan MM, Coyle S, Cleary IM, Kavanagh K, Verhaegen S, O'lLoughlin CM, NicAmhlaoibh R, Clynes M. Enhancement of chemotherapeutic drug toxicity to human tumor cells in vitro by a subset of non-steroidal anti-inflammatory drugs (NSAIDs). Eur J Cancer 1998; 34: 12509.
  • 50
    Soriano AF, Helfrich B, Chan DC, Heasley LE, Bunn PA, Chou TC. Synergistic effects of new chemopreventive agents and conventional cytotoxic agents against human lung cancer cell lines. Cancer Res 1999; 59: 617884.
  • 51
    Chou TC, Talalay P. Application of median-effect principle for the assessment of low-dose risk of carcinogenesis and for the quantitation of synergism and antagonism of chemotherapeutic agents. In: HarrapKR, ConnorsTA, eds. New avenues in developmental cancer chemotherapy. New York: Academic Press, 1987. 3764.
  • 52
    Plum SM, Hanson AD, Volker KM, Vu HA, Sim BK, Fogler WE, Fortier AH. Synergistic activity of recombinant human endostatin in combination with adriamycin: analysis of in vitro activity on endothelial cells and in vivo tumor progression in an orthotopic murine mammary carcinoma model. Clin Cancer Res 2003; 9: 461926.
  • 53
    Chou TC, O'Connor OA, Tong WP, Guan Y, Zhang ZG, Stachel SJ, Lee C, Danishefsky SJ. The synthesis, discovery, and development of a highly promising class of microtubule stabilization agents: curative effects of desoxyepothilones B and F against human tumor xenografts in nude mice. Proc Natl Acad Sci USA 2001; 98: 81138.
  • 54
    Song X, Lin HP, Johnson AJ, Tseng PH, Yang YT, Kulp SK, Chen CS. Cyclooxygenase-2,player or spectator in Cyclooxygenase-2 inhibitor-induced apoptosis in prostate cancer cells. J Natl Cancer Inst 2002; 94: 58591.
  • 55
    Johnson A, Song X, Hsu AL, Chen CS. Apoptosis signaling pathways mediated by cyclooxygenase-2 inhibitors in prostate cancer cells. Advan Enzyme Regul 2001; 41: 22135.
  • 56
    Bottone FGJr, Martinez JM, Alston-Mills B, Eling TE. Gene modulation by Cox-1 and Cox-2 specific inhibitors in human colorectal carcinoma cancer cells. Carcinogenesis 2004; 25: 34957.
  • 57
    Smith CJ, Zhang Y, Koboldt CM, Muhammad J, Zweifel BS, Shaffer A, Talley JJ, Masferrer JL, Seibert K, Isakson PC. Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc Natl Acad Sci USA 1998; 95: 133138.
  • 58
    Barnett J, Chow J, Ives D, Chiou M, Mackenzie R, Osen E, Nguyen B, Tsing S, Bach C, Freire J. Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system. Biochim Biophys Acta 1994; 1209: 1309.
  • 59
    Lai GH, Zhang Z, Sirica AE. Celecoxib acts in a cyclooxygenase-2-independent manner and I synergy with emodin to suppress rat cholangiocarcinoma growth in vitro through a mechanism involving enhanced Akt inactivation and increases activation of caspases-9 and 3. Mol Cancer Ther 2003; 2: 26571.
  • 60
    Devi GR. XIAP as target for therapeutic apoptosis in prostate cancer. Drug News Perspect 2004; 17: 12734.
  • 61
    Perazella MA, Tray K. Selective cyclooxygenase-2 inhibitors: a pattern of neophrotoxicity similar to traditional nonsteroidal anti-inflammatory drugs. Am J Med 2001; 111: 647.
  • 62
    Rainsford KD. The ever emerging anti-inflammatories: have there been any real advances? J Physiol Paris 2001; 95: 119.
  • 63
    Fosslien E. Adverse effects of nonsterodial anti-inflammatory drugs on the gastrointestinal system. Ann Clin Sci 1998; 28: 6781.
  • 64
    Gambaro G, Perazella MA. Diverse renal effects of anti-inflammatory agents: evaluation of selective and nonselective cyclooxygenase inhibitors. J Intern Med 2003; 253: 64352.
  • 65
    North GL. Celecoxib as adjunctive therapy for treatment of colorectal cancer. Ann Pharmacother 2001; 35: 163843.
  • 66
    Lanza-Jacoby S, Miller S, Flynn J, Gallatig K, Daskalakis C, Masferrer JL, Zweifel BS, Sembhi H, Russo IH. The cyclooxygenase-2 inhibitor, celecoxib, prevents the development of mammary tumors in Her-2/neu mice. Cancer Epidemiol Biomarkers Prev 2003; 12: 148691.
  • 67
    Liu XH, Kirschenbaum A, Yao S, Lee R, Holland JF, Levine AC. Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo. J Urol 2000; 164: 8205.