SEARCH

SEARCH BY CITATION

References

  • 1
    Vogel VG, McPherson RS. Dietary epidemiology of colon cancer. Hematol Oncol Clin North Am 1989; 3: 3563.
  • 2
    Kaizer L, Boyd NF, Kriukov V, Tritchler D. Fish consumption and breast cancer risk: an ecological study. Nutr Cancer 1989; 12: 618.
  • 3
    Schloss I, Kidd MS, Tichelaar HY, Young GO, O'Keefe SJ. Dietary factors associated with a low risk of colon cancer in coloured west coast fishermen. S Afr Med J 1997; 87: 1528.
  • 4
    Berg JP, Glattre E, Haldorsen T, Hostmark AT, Bay IG, Johansen AF, Jellum E. Longchain serum fatty acids and risk of thyroid cancer: a population- based case-control study in Norway. Cancer Causes Control 1994; 5: 4339.
  • 5
    Connolly JM, Gilhooly EM, Rose DP. Effects of reduced dietary linoleic acid intake,alone or combined with an algal source of docosahexaenoic acid, on MDA-MB-231 breast cancer cell growth and apoptosis in nude mice. Nutr Cancer 1999; 35: 449.
  • 6
    Rose DP, Connolly JM. Antiangiogenicity of docosahexaenoic acid and its role in the suppression of breast cancer cell growth in nude mice. Int J Oncol 1999; 15: 10115.
  • 7
    Ogilvie GK, Fettman MJ, Mallinckrodt CH, Walton JA, Hansen RA, Davenport DJ, Gross KL, Richardson KL, Rogers Q, Hand MS. Effect of fish oil,arginine, and doxorubicin chemotherapy on remission and survival time for dogs with lymphoma: a double-blind, randomized placebo-controlled study. Cancer 2000; 88: 191628.
  • 8
    Noguchi M, Minami M, Yagasaki R, Kinoshita K, Earashi M, Kitagawa H, Taniya T, Miyazaki I. Chemoprevention of DMBA-induced mammary carcinogenesis in rats by low-dose EPA and DHA. Br J Cancer 1997; 75: 34853.
  • 9
    Takahashi M, Totsuka Y, Masuda M, Fukuda K, Oguri A, Yazawa K, Sugimura T, Wakabayashi K. Reduction in formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced aberrant crypt foci in the rat colon by docosahexaenoic acid (DHA). Carcinogenesis 1997; 18: 193741.
  • 10
    Rose DP, Connolly JM, Coleman M. Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clin Cancer Res 1996; 2: 17516.
  • 11
    Jenski LJ, Zerouga M, Stillwell W. Omega-3 fatty acid-containing liposomes in cancer therapy. Proc Soc Exp Biol Med 1995; 210: 22733.
  • 12
    Norrish AE, Skeaff CM, Arribas GL, Sharpe SJ, Jackson RT. Prostate cancer risk and consumption of fish oils: a dietary biomarker-based case-control study. Br J Cancer 1999; 81: 123842.
  • 13
    Calviello G, Palozza P, Maggiano N, Franceschelli P, Di Nicuolo F, Marcocci ME, Bartoli GM. Effects of eicosapentaenoic and docosahexaenoic acids dietary supplementation on cell proliferation and apoptosis in rat colonic mucosa. Lipids 1999; Suppl 34: S111.
  • 14
    Latham P, Lund EK, Johnson IT. Dietary n-3 PUFA increases the apoptotic response to 1,2-dimethylhydrazine, reduces mitosis and suppresses the induction of carcinogenesis in the rat colon. Carcinogenesis 1999; 20: 64550.
  • 15
    Calviello G, Palozza P, Maggiano N, Piccioni E, Franceschelli P, Frattucci A, Di Nicuolo F, Bartoli GM. Cell proliferation, differentiation, and apoptosis are modified by n-3 polyunsaturated fatty acids in normal colonic mucosa. Lipids 1999; 34: 599604.
  • 16
    Collett ED. Docosahexaenoic acid inhibits oncogenic Ras activation and signal transduction in colonocytes. FASEB J 2000; 14: A169.
  • 17
    Hong MY, Chapkin RS, Davidson LA, Turner ND, Morris JS, Wang N, Carroll RJ, Lupton JR. Fish oil enhances targeted apoptosis during colon tumor initiation by downregulating ECL-3. FASEB J 2000; 14: A169.
  • 18
    Calviello G, Palozza P, Piccioni E, Maggiano N, Frattucci A, Franceschelli P, Bartoli GM. Dietary supplementation with eicosapentaenoic and docosahexaenoic acid inhibits growth of Morris hepatocarcinoma 3924A in rats: effects on proliferation and apoptosis. Int J Cancer 1998; 75: 699705.
  • 19
    Hatala MA, Rayburn J, Rose DP. Comparison of linoleic acid and eicosapentaenoic acid incorporation into human breast cancer cells. Lipids 1994; 29: 8317.
  • 20
    Rose DP, Connolly JM. Effects of fatty acids and inhibitors of eicosanoid synthesis on the growth of a human breast cancer cell line in culture. Cancer Res 1990; 50: 713944.
  • 21
    Madhavi N, Das UN. Effect of n-6 and n-3 fatty acids on the survival of vincristine sensitive and resistant human cervical carcinoma cells in vitro. Cancer Lett 1994; 84: 3141.
  • 22
    Siddiqui RA, Jenski LJ, Neff K, Harvey K, Kovacs R, Stillwell W. Docosahexanoic acid induces apoptosis in Jurkat cells by a protein phosphatase-mediated process. Biochim Biophys Acta 2001; 1499: 26575.
  • 23
    Siddiqui R, Jenski L, Harvey K, Wiesehan JD, Stillwell W, Zaloga GP. Cell cycle arrest in jurkat leukemic cells: a possible role for docosahexaenoic acid. Biochem J 2003; 371: 6219.
  • 24
    Siddiqui RA, Jenski LJ, Wiesehan JD, Hunter MV, Kovacs RJ, Stillwell W. Prevention of docosahexaenoic acid-induced cytotoxicity by phosphatidic acid in Jurkat leukemic cells: the role of protein phosphatase-1. Biochim Biophys Acta 2001; 1541: 188200.
  • 25
    Tonnetti L, Veri MC, Bonvini E, D'Adamio L. A role for neutral sphingomyelinase-mediated ceramide production in T cell receptor-induced apoptosis and mitogen-activated protein kinase-mediated signal transduction. J Exp Med 1999; 189: 15819.
  • 26
    Jayadev S, Liu B, Bielawska AE, Lee JY, Nazaire F, Pushkareva M, Obeid LM, Hannun YA. Role for ceramide in cell cycle arrest. J Biol Chem 1995; 270: 204752.
  • 27
    Spence MW. Sphingomyelinases. Adv Lipid Res 1993; 26: 323.
  • 28
    Levade T, Jaffrezou JP. Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta 1999; 1438: 117.
  • 29
    Okazaki T, Kondo T, Kitano T, Tashima M. Diversity and complexity of ceramide signalling in apoptosis. Cell Signal 1998; 10: 68592.
  • 30
    Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kyriakis JM, Haimovitz-Friedman A, Fuks Z, et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 1996; 380: 759.
  • 31
    Sandhoff K, Klein A. Intracellular trafficking of glycosphingolipids: role of sphingolipid activator proteins in the topology of endocytosis and lysosomal digestion. FEBS Lett 1994; 346: 1037.
  • 32
    Hostetler KY, Yazaki PJ. The subcellular localization of neutral sphingomyelinase in rat liver. J Lipid Res 1979; 20: 45663.
  • 33
    Marchesini N, Osta W, Bielawski J, Luberto C, Obeid LM, Hannun YA. Role for mammalian neutral sphingomyelinase 2 in confluence-induced growth arrest of MCF7 cells. J Biol Chem 2004: 279: 2510111.
  • 34
    Veldman RJ, Maestre N, Aduib OM, Medin JA, Salvayre R, Levade T. A neutral sphingomyelinase resides in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: potential implications in tumour necrosis factor signalling. Biochem J 2001; 355: 85968.
  • 35
    Shaikh SA, Dumaual AC, Castillo A, LoCascio D, Siddiqui RA, Stillwell W, Wassall SR. Oleic and docosahexaenoic acid differentially phase separate form lipid raft molecules: a comparative NMR, DSC, AFM, and detergent extraction study. Boiphys J 2004; 87: 175266.
  • 36
    Lopez-Marure R, Ventura JL, Sanchez L, Montano LF, Zentella A. Ceramide mimics tumour necrosis factor-alpha in the induction of cell cycle arrest in endothelial cells. Induction of the tumour suppressor p53 with decrease in retinoblastoma/protein levels. Eur J Biochem 2000; 267: 432533.
  • 37
    Lee JY, Leonhardt LG, Obeid LM. Cell-cycle-dependent changes in ceramide levels preceding retinoblastoma protein dephosphorylation in G2/M. Biochem J 1998; 334: 45761.
  • 38
    Lee JY, Bielawska AE, Obeid LM. Regulation of cyclin-dependent kinase 2 activity by ceramide. Exp Cell Res 2000; 261: 30311.
  • 39
    Hellin AC, Bentires-Alj M, Verlaet M, Benoit V, Gielen J, Bours V, Merville MP. Roles of nuclear factor-kappaB, p53, and p21/WAF1 in daunomycin-induced cell cycle arrest and apoptosis. J Pharm Exp Ther 2000; 295: 8708.
  • 40
    Guaitani A, Recchia M, Carli M, Rocchetti M, Bartosek I, Garattini S. Walker carcinoma 256: a model for studies on tumor-induced anorexia and cachexia. Oncology 1982; 39: 1738.
  • 41
    Vielhaber GBL, Lindner B, Pfeiffer S, Wepf R, Hintze U, Wittern KP, Brade H. Mouse anti-ceramide antiserum: a specific tool for the detection of endogenous ceramide. Glycobiology 2001; 11: 4517.
  • 42
    American Cancer Society. Cancer Facts and Figures 2004. Atlanta: American Cancer Society, 2004.
  • 43
    Hannun YA, Bell RM. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation [see comment] [review] [110 refs]. Science 1989; 243: 5007.
  • 44
    Kolesnick RN. Sphingomyelin and derivatives as cellular signals. Prog Lipid Res 1991: 30: 138.
  • 45
    Liu B, Andrieu-Abadie N, Levade T, Zhang P, Obeid LM, Hannun YA. Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death. J Biol Chem 1998: 273: 1131320.
  • 46
    Tepper CG, Jayadev S, Liu B, Bielawska A, Wolff R, Yonehara S, Hannun YA, Seldin MF. Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc Natl Acad Sci USA 1995; 92: 84437.
  • 47
    Hannun YA. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 1994; 269: 31258.
  • 48
    Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science 1996; 274: 18559.
  • 49
    van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M, Borst J. Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 2003: 369(Pt 2): 199211.
  • 50
    Prinetti A, Chigorno V, Prioni S, Loberto N, Marano N, Tettamanti G, Sonnino S. Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 2001: 276: 2113645.
  • 51
    Grassme H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E. CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 2001; 276: 2058996.
  • 52
    Adam-Klages S, Adam D, Wiegmann K, Struve S, Kolanus W, Schneider-Mergener J, Kronke M. FAN,a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell 1996; 86: 93747.
  • 53
    Tepper AD, Ruurs P, Wiedmer T, Sims PJ, Borst J, van Blitterswijk WJ. Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipid scrambling and alters cell-surface morphology [see comment]. J Cell Biol 2000: 150: 15564.