• 1
    Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer 2003; 3: 80721.
  • 2
    Wakefield LM, Roberts AB. TGF-β signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002; 12: 229.
  • 3
    Cardillo MR, Petrangeli E, Perracchio L, Salvatori L, Ravenna L, Di Silverio F. Transforming growth factor-β expression in prostate neoplasia. Anal Quant Cytol Histol 2000; 22: 110.
  • 4
    Wikstrom P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A. Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 1998; 37: 1929.
  • 5
    Wang Y, Hayward S, Cao M, Thayer K, Cunha G. Cell differentiation lineage in the prostate. Differentiation 2001; 68: 2709.
  • 6
    Bello-DeOcampo D, Tindall DJ. TGF-β1/Smad signaling in prostate cancer. Curr Drug Targets 2003; 4: 197207.
  • 7
    Tu WH, Thomas TZ, Masumori N, Bhowmick NA, Gorska AE, Shyr Y, Kasper S, Case T, Roberts RL, Shappell SB, Moses HL, Matusik RJ. The loss of TGF-β signaling promotes prostate cancer metastasis. Neoplasia 2003; 5: 26777.
  • 8
    Horvath LG, Henshall SM, Kench JG, Turner JJ, Golovsky D, Brenner PC, O'Neill GF, Kooner R, Stricker PD, Grygiel JJ, Sutherland RL. Loss of BMP2, Smad8, and Smad4 expression in prostate cancer progression. Prostate 2004; 59: 23442.
  • 9
    Shibanuma M, Kuroki T, Nose K. Isolation of a gene encoding a putative leucine zipper structure that is induced by transforming growth factor β1 and other growth factors. J Biol Chem 1992; 267: 1021924.
  • 10
    Chung LW, Chang SM, Bell C, Zhau HE, Ro JY, von Eschenbach AC. Co-inoculation of tumorigenic rat prostate mesenchymal cells with non-tumorigenic epithelial cells results in the development of carcinosarcoma in syngeneic and athymic animals. Int J Cancer 1989; 43: 117987.
  • 11
    Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL, Pathak S, von Eschenbach AC, Chung LW. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 1994; 54: 257781.
  • 12
    Soma T, Dohrmann CE, Hibino T, Raftery LA. Profile of transforming growth factor-β responses during the murine hair cycle. J Invest Dermatol 2003; 121: 96975.
  • 13
    Goding JW. Monoclonal antibodies: principles and practice, 2nd ed. London: Academic Press, 1986.
  • 14
    Heller M, Stalder D, Schlappritzi E, Hayn G, Matter U, Haeberli A. Mass spectrometry-based analytical tools for the molecular protein characterization of human plasma lipoproteins. Proteomics 2005; 5: 261930.
  • 15
    Aoyagi K, Shima I, Wang M, Hu Y, Garcia FU, Stearns ME. Specific transcription factors prognostic for prostate cancer progression. Clin Cancer Res 1998; 4: 215360.
  • 16
    Abrahams NA, Bostwick DG, Ormsby AH, Qian J, Brainard JA. Distinguishing atrophy and high-grade prostatic intraepithelial neoplasia from prostatic adenocarcinoma with and without previous adjuvant hormone therapy with the aid of cytokeratin 5/6. Am J Clin Pathol 2003; 120: 36876.
  • 17
    Peehl DM. Primary cell cultures as models of prostate cancer development. Endocr Relat Cancer 2005; 12: 1947.
  • 18
    Latil A, Pesche S, Valeri A, Fournier G, Cussenot O, Lidereau R. Expression and mutational analysis of the MADR2/Smad2 gene in human prostate cancer. Prostate 1999; 40: 22531.
  • 19
    Edwards J, Krishna NS, Mukherjee R, Bartlett JM. The role of c-Jun and c-Fos expression in androgen-independent prostate cancer. J Pathol 2004; 204: 1538.
  • 20
    Mestayer C, Blanchere M, Jaubert F, Dufour B, Mowszowicz I. Expression of androgen receptor coactivators in normal and cancer prostate tissues and cultured cell lines. Prostate 2003; 56: 192200.
  • 21
    Ashida S, Nakagawa H, Katagiri T, Furihata M, Iiizumi M, Anazawa Y, Tsunoda T, Takata R, Kasahara K, Miki T, Fujioka T, Shuin T, et al. Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs. Cancer Res 2004; 64: 596372.
  • 22
    Masuda H, Fukabori Y, Nakano K, Shimizu N, Yamanaka H. Expression of bone morphogenetic protein-7 (BMP-7) in human prostate. Prostate 2004; 59: 1016.
  • 23
    Hamdy FC, Autzen P, Robinson MC, Horne CH, Neal DE, Robson CN. Immunolocalization and messenger RNA expression of bone morphogenetic protein-6 in human benign and malignant prostatic tissue. Cancer Res 1997; 57: 442731.
  • 24
    Benezra R, Davis RL, Lassar A, Tapscott S, Thayer M, Lockshon D, Weintraub H. Id: a negative regulator of helix–loop–helix DNA binding proteins. Control of terminal myogenic differentiation. Ann N Y Acad Sci 1990; 599: 111.
    Direct Link:
  • 25
    Chaudhary J, Schmidt M, Sadler-Riggleman I. Negative acting HLH proteins Id1, Id2, Id3, and Id4 are expressed in prostate epithelial cells. Prostate 2005; 64: 25364.
  • 26
    Hashiguchi A, Okabayashi K, Asashima M. Role of TSC-22 during early embryogenesis in Xenopus laevis. Dev Growth Differ 2004; 46: 53544.
  • 27
    Dobens LL, Peterson JS, Treisman J, Raftery LA. Drosophila bunched integrates opposing DPP and EGF signals to set the operculum boundary. Development 2000; 127: 74554.
  • 28
    Treisman JE, Lai ZC, Rubin GM. Shortsighted acts in the decapentaplegic pathway in Drosophila eye development and has homology to a mouse TGF-β-responsive gene. Development 1995; 121: 283545.
  • 29
    Kester HA, van der Leede BM, van der Saag PT, van der Burg B. Novel progesterone target genes identified by an improved differential display technique suggest that progestin-induced growth inhibition of breast cancer cells coincides with enhancement of differentiation. J Biol Chem 1997; 272: 1663743.
  • 30
    Nakashiro K, Kawamata H, Hino S, Uchida D, Miwa Y, Hamano H, Omotehara F, Yoshida H, Sato M. Down-regulation of TSC-22 (transforming growth factor β-stimulated clone 22) markedly enhances the growth of a human salivary gland cancer cell line in vitro and in vivo. Cancer Res 1998; 58: 54955.
  • 31
    Kester HA, Blanchetot C, den Hertog J, van der Saag PT, van der Burg B. Transforming growth factor-β-stimulated clone-22 is a member of a family of leucine zipper proteins that can homo- and heterodimerize and has transcriptional repressor activity. J Biol Chem 1999; 274: 2743947.
  • 32
    Rubin MA. Use of laser capture microdissection, cDNA microarrays, and tissue microarrays in advancing our understanding of prostate cancer. J Pathol 2001; 195: 806.
  • 33
    Nelson PS. Predicting prostate cancer behavior using transcript profiles. J Urol 2004; 172: 2832.
  • 34
    Huppi K, Chandramouli GV. Molecular profiling of prostate cancer. Curr Urol Rep 2004; 5: 4551.
  • 35
    Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM. Delineation of prognostic biomarkers in prostate cancer. Nature 2001; 412: 8226.
  • 36
    Shostak KO, Dmitrenko VV, Garifulin OM, Rozumenko VD, Khomenko OV, Zozulya YA, Zehetner G, Kavsan VM. Downregulation of putative tumor suppressor gene TSC-22 in human brain tumors. J Surg Oncol 2003; 82: 5764.
  • 37
    Schalken JA, van Leenders G. Cellular and molecular biology of the prostate: stem cell biology. Urology 2003; 62: 1120.
  • 38
    Hino S, Kawamata H, Uchida D, Omotehara F, Miwa Y, Begum NM, Yoshida H, Fujimori T, Sato M. Nuclear translocation of TSC-22 (TGF-β-stimulated clone-22) concomitant with apoptosis: TSC-22 as a putative transcriptional regulator. Biochem Biophys Res Commun 2000; 278: 65964.
  • 39
    Michel C, Roberts RA, Desdouets C, Isaacs KR, Boitier E. Characterization of an acute molecular marker of nongenotoxic rodent hepatocarcinogenesis by gene expression profiling in a long term clofibric acid study. Chem Res Toxicol 2005; 18: 6118.
  • 40
    Gupta RA, Sarraf P, Brockman JA, Shappell SB, Raftery LA, Willson TM, DuBois RN. Peroxisome proliferator-activated receptor γ and transforming growth factor-β pathways inhibit intestinal epithelial cell growth by regulating levels of TSC-22. J Biol Chem 2003; 278: 74318.
  • 41
    Ohta S, Yanagihara K, Nagata K. Mechanism of apoptotic cell death of human gastric carcinoma cells mediated by transforming growth factor β. Biochem J 1997; 324(Pt 3): 77782.
  • 42
    Omotehara F, Uchida D, Hino S, Begum NM, Yoshida H, Sato M, Kawamata H. In vivo enhancement of chemosensitivity of human salivary gland cancer cells by overexpression of TGF-β stimulated clone-22. Oncol Rep 2000; 7: 73740.
  • 43
    Hino S, Kawamata H, Omotehara F, Uchida D, Miwa Y, Begum NM, Yoshida H, Sato M, Fujimori T. Cytoplasmic TSC-22 (transforming growth factor-β-stimulated clone-22) markedly enhances the radiation sensitivity of salivary gland cancer cells. Biochem Biophys Res Commun 2002; 292: 95763.
  • 44
    Uchida D, Kawamata H, Omotehara F, Miwa Y, Hino S, Begum NM, Yoshida H, Sato M. Over-expression of TSC-22 (TGF-β stimulated clone-22) markedly enhances 5-fluorouracil-induced apoptosis in a human salivary gland cancer cell line. Lab Invest 2000; 80: 95563.
  • 45
    Uchida D, Omotehara F, Nakashiro K, Tateishi Y, Hino S, Begum NM, Fujimori T, Kawamata H. Posttranscriptional regulation of TSC-22 (TGF-β-stimulated clone-22) gene by TGF-β1. Biochem Biophys Res Commun 2003; 305: 84654.
  • 46
    McNeal JE, Villers A, Redwine EA, Freiha FS, Stamey TA. Microcarcinoma in the prostate: its association with duct-acinar dysplasia. Hum Pathol 1991; 22: 64452.
  • 47
    Colombel M, Symmans F, Gil S, O'Toole KM, Chopin D, Benson M, Olsson CA, Korsmeyer S, Buttyan R. Detection of the apoptosis-suppressing oncoprotein bc1–2 in hormone-refractory human prostate cancers. Am J Pathol 1993; 143: 390400.
  • 48
    Bui M, Reiter RE. Stem cell genes in androgen-independent prostate cancer. Cancer Metastasis Rev 1998; 17: 3919.
  • 49
    Liu AY, True LD, LaTray L, Ellis WJ, Vessella RL, Lange PH, Higano CS, Hood L, van den Engh G. Analysis and sorting of prostate cancer cell types by flow cytometry. Prostate 1999; 40: 1929.
  • 50
    Liu AY. Differential expression of cell surface molecules in prostate cancer cells. Cancer Res 2000; 60: 342934.
  • 51
    Parsons JK, Gage WR, Nelson WG, De Marzo AM. p63 protein expression is rare in prostate adenocarcinoma: implications for cancer diagnosis and carcinogenesis. Urology 2001; 58: 61924.
  • 52
    van Leenders GJ, Schalken JA. Epithelial cell differentiation in the human prostate epithelium: implications for the pathogenesis and therapy of prostate cancer. Crit Rev Oncol Hematol 2003; 46( Suppl): S3S10.
  • 53
    Bonkhoff H, Stein U, Remberger K. The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate 1994; 24: 1148.
  • 54
    Uzgare AR, Xu Y, Isaacs JT. In vitro culturing and characteristics of transit amplifying epithelial cells from human prostate tissue. J Cell Biochem 2004; 91: 196205.
  • 55
    Tran CP, Lin C, Yamashiro J, Reiter RE. Prostate stem cell antigen is a marker of late intermediate prostate epithelial cells. Mol Cancer Res 2002; 1: 11321.
  • 56
    Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L, Yang A, Montironi R, McKeon F, Loda M. p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol 2000; 157: 176975.
  • 57
    Dohrmann CE, Belaoussoff M, Raftery LA. Dynamic expression of TSC-22 at sites of epithelial–mesenchymal interactions during mouse development. Mech Dev 1999; 84: 14751.
  • 58
    Kester HA, Ward-van Oostwaard TM, Goumans MJ, van Rooijen MA, van Der Saag PT, van Der Burg B, Mummery CL. Expression of TGF-β stimulated clone-22 (TSC-22) in mouse development and TGF-β signalling. Dev Dyn 2000; 218: 56372.
  • 59
    Cunha GR, Hayward SW, Wang YZ, Ricke WA. Role of the stromal microenvironment in carcinogenesis of the prostate. Int J Cancer 2003; 107: 110.
  • 60
    Xu Y, Iyengar S, Roberts RL, Shappell SB, Peehl DM. Primary culture model of peroxisome proliferator-activated receptor γ activity in prostate cancer cells. J Cell Physiol 2003; 196: 13143.
  • 61
    Kubota T, Koshizuka K, Williamson EA, Asou H, Said JW, Holden S, Miyoshi I, Koeffler HP. Ligand for peroxisome proliferator-activated receptor γ (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer Res 1998; 58: 334452.