SEARCH

SEARCH BY CITATION

References

  • 1
    Sella A, Konichezky M, Flex D, Sulkes A, Baniel J. Low PSA metastatic androgen-independent prostate cancer. Eur Urol 2000; 38(3): 2504.
  • 2
    Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, Minasian LM, Ford LG, Lippman SM, Crawford ED, Crowley JJ, Coltman CA,Jr. Prevalence of prostate cancer among men with a prostate-specific antigen level < or = 4.0 ng per milliliter. N Engl J Med 2004; 350(22): 223946.
  • 3
    Presti JC,Jr. Prostate cancer: assessment of risk using digital rectal examination, tumor grade, prostate-specific antigen, and systematic biopsy. Radiol Clin North Am 2000; 38(1): 4958.
  • 4
    Beer TM, Garzotto M, Henner WD, Eilers KM, Wersinger EM. Intermittent chemotherapy in metastatic androgen-independent prostate cancer. Br J Cancer 2003; 89(6): 96870.
  • 5
    Salido M, Vilches J, Lopez A. Neuropeptides bombesin and calcitonin induce resistance to etoposide induced apoptosis in prostate cancer cell lines. Histol Histopathol 2000; 15(3): 72938.
  • 6
    Bui M, Reiter RE. Stem cell genes in androgen-independent prostate cancer. Cancer Metastasis Rev 1998; 17(4): 3919.
  • 7
    Aalinkeel R, Nair MP, Sufrin G, Mahajan SD, Chadha KC, Chawda RP, Schwartz SA. Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells. Cancer Res 2004; 64(15): 531121.
  • 8
    Furuya Y, Akakura K, Akimoto S, Inomiya H, Ito H. Pattern of progression and survival in hormonally treated metastatic prostate cancer. Int J Urol 1999; 6(5): 2404.
  • 9
    Papadakis SA, Mitsitsikas TC, Markakidis S, Minas MK, Tripsiannis G, Tentes AA. The development of bone metastases as the first sign of metastatic spread in patients with primary solid tumours. Int Orthop 2004; 28(2): 1025.
  • 10
    Segawa N, Mori I, Utsunomiya H, Nakamura M, Nakamura Y, Shan L, Kakudo K, Katsuoka Y. Prognostic significance of neuroendocrine differentiation, proliferation activity and androgen receptor expression in prostate cancer. Pathol Int 2001; 51(6): 4529.
  • 11
    Borre M, Nerstrom B, Overgaard J. Association between immunohistochemical expression of vascular endothelial growth factor (VEGF), VEGF-expressing neuroendocrine-differentiated tumor cells, and outcome in prostate cancer patients subjected to watchful waiting. Clin Cancer Res 2000; 6(5): 188290.
  • 12
    Noordzij MA, van Weerden WM, de Ridder CM, van der Kwast TH, Schroder FH, van Steenbrugge GJ. Neuroendocrine differentiation in human prostatic tumor models. Am J Pathol 1996; 149(3): 85971.
  • 13
    di Sant'Agnese PA. Neuroendocrine differentiation in prostatic carcinoma: an update. Prostate Suppl 1998; 8: 749.
  • 14
    Jongsma J, Oomen MH, Noordzij MA, Romijn JC, van der Kwast TH, Schroder FH, et al. Androgen-independent growth is induced by neuropeptides in human prostate cancer cell lines. Prostate Suppl 2000; 42: 3444.
  • 15
    Cohen MB, Griebling TL, Ahaghotu CA, Rokhlin OW, Ross JS. Cellular adhesion molecules in urologic malignancies. Am J Clin Pathol 1997; 107: 5663.
  • 16
    Angelucci A, D'Ascenzo S, Festuccia C, Gravina GL, Bologna M, Dolo V, Pavan A. Vesicle-associated urokinase plasminogen activator promotes invasion in prostate cancer cell lines. Clin Exp Metastasis 2000; 18(2): 16370.
  • 17
    Festuccia C, Giunciuglio D, Guerra F, Villanova I, Angelucci A, Manduca P, Teti A, Albini A, Bologna M. Osteoblasts modulate secretion of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in human prostate cancer cells promoting migration and matrigel invasion. Oncol Res 1999; 11(1): 1731.
  • 18
    Chien J, Ren Y, Qing Wang Y, Bordelon W, Thompson E, Davis R, Rayford W, Shah G. Calcitonin is a prostate epithelium-derived growth stimulatory peptide. Mol Cell Endocrinol 2001; 181(1-2): 6979.
  • 19
    Shah GV, Rayford W, Noble MJ, Austenfeld M, Weigel J, Vamos S, et al. Calcitonin stimulates growth of human prostate cancer cells through receptor-mediated increase in cyclic adenosine 3′,5′-monophosphates and cytoplasmic Ca2+ transients. Endocrinology 1994; 134(2): 596602.
  • 20
    Chien J, Shah GV. Role of stimulatory guanine nucleotide binding protein (GSα) in proliferation of PC-3M prostate cancer cells. Int J Cancer 2001; 91(1): 4654.
  • 21
    Segawa N, Nakamura M, Nakamura Y, Mori I, Katsuoka Y, Kakudo K. Phosphorylation of mitogen-activated protein kinase is inhibited by calcitonin in DU145 prostate cancer cells. Cancer Res 2001; 61(16): 60603.
  • 22
    Ritchie CK, Thomas KG, Andrews LR, Tindall DJ, Fitzpatrick LA. Effects of the calciotrophic peptides calcitonin and parathyroid hormone on prostate cancer growth and chemotaxis. Prostate 1997; 30(3): 1837.
  • 23
    Sabbisetti VS, Chirugupati S, Thomas S, Vaidya KS, Reardon D, Chiriva-Internati M, Iczkowski KA, Shah GV. Calcitonin increases invasiveness of prostate cancer cells: role for cyclic AMP-dependent protein kinase A in calcitonin action. Int J Cancer 2005; 117(4): 55160.
  • 24
    Xing RH, Rabbani SA. Regulation of urokinase production by androgens in human prostate cancer cells: effect on tumor growth and metastases in vivo. Endocrinology 1999; 140(9): 405664.
  • 25
    Chapman HA, Wei Y, Simon DI, Waltz DA. Role of urokinase receptor and caveolin in regulation of integrin signaling. Thromb Haemost 1999; 82(2): 2917.
  • 26
    Waltz DA, Natkin LR, Fujita RM, Wei Y, Chapman HA. Plasmin and plasminogen activator inhibitor type 1 promote cellular motility by regulating the interaction between the urokinase receptor and vitronectin. J Clin Invest 1997; 100(1): 5867.
  • 27
    Camiolo SM, Markus G, Evers JL, Hobika GH, DePasquale JL, Beckley S, Grimaldi JP. Plasminogen activator content of neoplastic and benign human prostate tissues; fibrin augmentation of an activator activity. Int J Cancer 1981; 27(2): 1918.
  • 28
    Unlu A, Leake RE. Transforming growth factor β1 stimulates urokinase plasminogen activator system on prostate cancer cells. Int J Biol Markers 2003; 18(2): 14751.
  • 29
    Eandi JA, Yang JC, Evans CP. Signal transduction-mediated regulation of urokinase gene expression in human prostate cancer. Biochem Biophys Res Commun 2001; 288(3): 5217.
  • 30
    Shah GV, Noble MJ, Austenfeld M, Weigel J, Deftos LJ, Mebust WK. Presence of calcitonin-like immunoreactivity (iCT) in human prostate gland: evidence for iCT secretion by cultured prostate cells. Prostate 1992; 21(2): 8797.
  • 31
    Rossi JJ, Elkins D, Zaia JA, Sullivan S. Ribozymes as anti-HIV-1 therapeutic agents: principles, applications, and problems. AIDS Res Hum Retrovir 1992; 8: 18389.
  • 32
    Rosenberg GA, Dencoff JE, McGuire PG, Liotta LA, Stetler-Stevenson WG. Injury-induced 92-kilodalton gelatinase and urokinase expression in rat brain. Lab Invest 1994; 71(3): 41722.
  • 33
    McGuire PG, Orkin RW. Urokinase activity in the developing avian heart: a spatial and temporal analysis. Dev Dyn 1992; 193(1): 2433.
  • 34
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227(5259): 6805.
  • 35
    Chien J, Wong E, Nikes E, Noble MJ, Pantazis CG, Shah GV. Constitutive activation of stimulatory guanine nucleotide binding protein (G(S)α QL)-mediated signaling increases invasiveness and tumorigenicity of PC-3M prostate cancer cells. Oncogene 1999; 18(22): 337682.
  • 36
    Heussen C, Dowdle EB. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 1980; 102(1): 196202.
  • 37
    Sabbisetti VS, Chirugupati S, Thomas S, Vaidya KS, Reardon D, Chiriva-Internati M, et al. Calcitonin increases invasiveness of prostate cancer cells: role for cyclic AMP-dependent protein kinase A in calcitonin action. Int J Cancer 2005; 117(4): 55160.
  • 38
    Chigurupati S, Kulkarni T, Thomas S, Shah G. Calcitonin stimulates multiple stages of angiogenesis by directly acting on endothelial cells. Cancer Res 2005; 65(18): 851929.
  • 39
    Novokhatny V, Medved L, Mazar A, Marcotte P, Henkin J, Ingham K. Domain structure and interactions of recombinant urokinase-type plasminogen activator. J Biol Chem 1992; 267(6): 387885.
  • 40
    Festuccia C, Dolo V, Guerra F, Violini S, Muzi P, Pavan A, Bologna M. Plasminogen activator system modulates invasive capacity and proliferation in prostatic tumor cells. Clin Exp Metastasis 1998; 16(6): 51328.
  • 41
    Tremblay L, Hauck W, Nguyen LT, Allard P, Landry F, Chapdelaine A, et al. Regulation and activation of focal adhesion kinase and paxillin during the adhesion, proliferation, and differentiation of prostatic epithelial cells in vitro and in vivo. Mol Endocrinol 1996; 10: 101020.
  • 42
    Zhang Z, Hernandez-Lagunas L, Horne WC, Baron R. Cytoskeleton-dependent tyrosine phosphorylation of the p130(Cas) family member HEF1 downstream of the G protein-coupled calcitonin receptor. Calcitonin induces the association of HEF1, paxillin, and focal adhesion kinase. J Biol Chem 1999; 274(35): 250938.
  • 43
    Wei Y, Eble JA, Wang Z, Kreidberg JA, Chapman HA. Urokinase receptors promote β1 integrin function through interactions with integrin α3β1. Mol Biol Cell 2001; 12(10): 297586.
  • 44
    Achbarou A, Kaiser S, Tremblay G, Ste-Marie LG, Brodt P, Goltzman D, et al. Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Res 1994; 54(9): 23727.
  • 45
    Quax PH, de Bart AC, Schalken JA, Verheijen JH. Plasminogen activator and matrix metalloproteinase production and extracellular matrix degradation by rat prostate cancer cells in vitro: correlation with metastatic behavior in vivo. Prostate 1997; 32(3): 196204.
  • 46
    Rabbani SA. Metalloproteases and urokinase in angiogenesis and tumor progression. In vivo 1998; 12(1): 13542.
  • 47
    Festuccia C, Dolo V, Guerra F, Violini S, Muzi P, Pavan A, Bologna M. Plasminogen activator system modulates invasive capacity and proliferation in prostatic tumor cells. Clin Exp Metastasis 1998; 16: 51328.
  • 48
    Nagakawa O, Ogasawara M, Fujii H, Murakami K, Murata J, Fuse H, Saiki I. Effect of prostatic neuropeptides on invasion and migration of PC-3 prostate cancer cells. Cancer Lett 1998; 133: 2733.
  • 49
    Sehgal I, Thompson TC. Neuropeptides induce Mr 92,000 type IV collagenase (matrix metalloprotease-9) activity in human prostate cancer cell lines. Cancer Res 1998; 58(19): 428891.
  • 50
    Nakamura M, Yang Q, Ozaki T, Nakamura Y, Yamasaki H, Mori I, Kakudo K. Induction of uPA but not NF-IL3A by calcitonin is dependent on Erk1/2 phosphorylation in porcine renal cell line LLC-PK1. Biochem Biophys Res Commun 2002; 290(5): 14838.
  • 51
    Altus MS, Pearson D, Horiuchi A, Nagamine Y. Inhibition of protein synthesis in LLC-PK1 cells increases calcitonin-induced plasminogen-activator gene transcription and mRNA stability. Biochem J 1987; 242(2): 38792.
  • 52
    Lee JS, Catanzariti L, Hemmings BA, Kiefer B, Nagamine Y. Activation of cAMP-dependent protein kinase alters the chromatin structure of the urokinase-type plasminogen activator gene promoter. Nucleic Acids Res 1994; 22(4): 56975.
  • 53
    Mira-y-Lopez R, Jaramillo S, Waxman S. Redundant regulation of urokinase plasminogen activator transcription by the two major isozymes of cAMP-dependent protein kinase. J Biol Chem 1992; 267: 2306368.
  • 54
    Jans DA, Resink TJ, Hemmings BA. Dependence of urokinase-type-plasminogen-activator induction on cyclic AMP-dependent protein kinase activation in LLC-PK1 cells. Biochem J 1987; 243: 41318.
  • 55
    Goretzki L, Mueller BM. Receptor-mediated endocytosis of urokinase-type plasminogen activator is regulated by cAMP-dependent protein kinase. J Cell Sci 1997; 110: 1395402.
  • 56
    Li C, Liu JN, Gurewich V. Urokinase-type plasminogen activator-induced monocyte adhesion requires a carboxyl-terminal lysine and cAMP-dependent signal transduction. J Biol Chem 1995; 270: 3028285.
  • 57
    Jans DA, Pavo I, Fahrenholz F. Oxytocin induced cAMP-dependent protein kinase activation and urokinase-type plasminogen activator production in LLC-PK1 renal epithelial cells is mediated by the vasopressin V2-receptor. FEBS Lett 1993; 315: 13438.
  • 58
    Ciambrone GJ, McKeown-Longo PJ. Plasminogen activator inhibitor type I stabilizes vitronectin-dependent adhesions in HT-1080 cells. J Cell Biol 1990; 111(5 Pt 1): 218395.
  • 59
    Waltz DA, Chapman HA. Reversible cellular adhesion to vitronectin linked to urokinase receptor occupancy. J Biol Chem 1994; 269(20): 1474650.
  • 60
    Reuning U, Magdolen V, Hapke S, Schmitt M. Molecular and functional interdependence of the urokinase-type plasminogen activator system with integrins. Biol Chem 2003; 384(8): 111931.
  • 61
    Yebra M, Goretzki L, Pfeifer M, Mueller BM. Urokinase-type plasminogen activator binding to its receptor stimulates tumor cell migration by enhancing integrin-mediated signal transduction. Exp Cell Res 1999; 250(1): 23140.
  • 62
    Yebra M, Parry GC, Stromblad S, Mackman N, Rosenberg S, Mueller BM, et al. Requirement of receptor-bound urokinase-type plasminogen activator for integrin αvβ5-directed cell migration. J Biol Chem 1996; 271(46): 293939.
  • 63
    Wilcox-Adelman SA, Wilkins-Port CE, McKeown-Longo PJ. Localization of urokinase type plasminogen activator to focal adhesions requires ligation of vitronectin integrin receptors. Cell Adhes Commun 2000; 7(6): 47790.
  • 64
    Helenius MA, Saramaki OR, Linja MJ, Tammela TL, Visakorpi T. Amplification of urokinase gene in prostate cancer. Cancer Res 2001; 61(14): 53404.
  • 65
    Jankun J, Keck RW, Skrzypczak-Jankun E, Swiercz R. Inhibitors of urokinase reduce size of prostate cancer xenografts in severe combined immunodeficient mice. Cancer Res 1997; 57(4): 55963.