SEARCH

SEARCH BY CITATION

References

  • 1
    Brooks SA. The involvement of Helix pomatia lectin (HPA) binding to N-acteylgalactosamine glycans in cancer progression. Histol Histopathol 2000; 15: 14358.
  • 2
    Debray H, Decout D, Streker G, Spik G, Montrieul J. Specificity of 12 lectins towards oligosacharides and glycopeptides related to N-glycosylproteins. Eur J Biochem 1981; 117: 4155.
  • 3
    Wu AM, Wu JH, Liu JH, Singh T. Recognition profile of Bauhinia purpurea agglutinin (BPA). Life Sci 2004; 74: 176379.
  • 4
    Stein H, Delsol G, Pileri S. Hodgkin's lymphoma. In: JaffeES, HarrisNL, SteinH, VardimanJ, eds. World Health Organisation (WHO) classification of tumours-pathology & genetics-tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press (International Agency for Research on Cancer), 2001. 23753.
  • 5
    Schwarz M, Spector L, Gargir A, Shtevi A, Gortler M, Altstock RT, Dukler AA, Dotan N. A new kind of carbohydrate array, its use for profiling antiglycan antibodies, and the discovery of a novel human cellulose-binding antibody. Glycobiology 2003; 13: 74954.
  • 6
    Nimrichter L, Gargir A, Gortler M, Altstock RT, Shtevi A, Weisshaus O, Fire E, Dotan N, Schnaar RL. Intact cell adhesion to glycan microarrays. Glycobiology 2004; 14: 197203.
  • 7
    Crowther JR. ELISA: theory and practice. Methods in molecular biology, vol. 42. Totowa, NJ: Humana Press, 1995.
  • 8
    Tzankov A, Zimpfer A, Lugli A, Krugmann J, Went P, Schraml P, Maurer R, Ascani S, Pileri S, Geley S, Dirnhofer S. High-throughput tissue microarray analysis of G1-cyclin alterations in classical Hodgkin's lymphoma indicates overexpression of cyclin E1. J Pathol 2003; 199: 2017.
  • 9
    Marafioti T, Pozzobon M, Hansmann ML, Delsol G, Pileri SA, Mason DY. Expression of intracellular signaling molecules in classical and lymphocyte predominance Hodgkin disease. Blood 2004; 103: 18893.
  • 10
    Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1999; 1473: 2134.
  • 11
    Cunto-Amesty G, Monzavi-Karbassi B, Luo P, Jousheghany F, Kieber-Emmons T. Strategies in cancer vaccines development. Int J Parasitol 2003; 33: 597613.
  • 12
    Feizi T, Fazio F, Chai W, Wong CH. Carbohydrate microarrays - a new set of technologies at the frontiers of glycomics. Curr Opin Struct Biol 2003; 13: 63745.
  • 13
    Li G, Miles A, Line A, Rees RC. Identification of tumour antigens by serological analysis of cDNA expression cloning. Cancer Immunol Immunother 2004; 53: 13943.
  • 14
    Willats WG, Marcus SE, Knox JP. Generation of monoclonal antibody specific to (1–>5)-α-L-arabinan. Carbohydr Res 1998; 308: 14952.
  • 15
    Zhang S, Zhang HS, Cordon-Cardo C, Reuter VE, Singhal AK, Lloyd KO, Livingston PO. Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. Int J Cancer 1997; 73: 506.
  • 16
    Cao Y, Stosiek P, Springer GF, Karsten U. Thomsen-Friedenreich-related carbohydrate antigens in normal adult tissues: a systematic and comparative study. Histochem Cell Biol 1996; 106: 197207.
  • 17
    Springer GF. Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis and immunotherapy. J Mol Med 1997; 75: 594602.
  • 18
    Springer GF, Tegtmeyer H. Origin of anti-Thomsen-Friedenreich (T) and Tn agglutinins in man and in White Leghorn chicks. Br J Haematol 1981; 47: 45360.
  • 19
    Butschak G, Karsten U. Isolation and characterization of thomsen-friedenreich-specific antibodies from human serum. Tumour Biol 2002; 23: 11322.
  • 20
    Freire T, Medeiros A, Reis CA, Real FX, Osinaga E. Biochemical characterization of soluble Tn glycoproteins from malignant effusions of patients with carcinomas. Oncol Rep 2003; 10: 157785.
  • 21
    Nakada H, Inoue M, Tanaka N, Numata Y, Kitagawa H, Fukui S, Yamashina I. Expression of the Tn antigen on T-lymphoid cell line Jurkat. Biochem Biophys Res Commun 1991; 179: 7627.
  • 22
    Tzankov A, Zimpfer A, Pehrs AC, Lugli A, Went P, Maurer R, Pileri S, Dirnhofer S. Expression of B-cell markers in classical Hodgkin lymphoma: a tissue microarray analysis of 330 cases. Mod Pathol 2003; 16: 11417.
  • 23
    Ree HJ, Neiman RS, Martin AW, Dallenbach F, Stein H. Paraffin section markers for Reed-Sternberg cells. A comparative study of peanut agglutinin, Leu-M1, LN-2, and Ber-H2. Cancer 1989; 63: 20306.
  • 24
    Strauchen JA. Lectin receptors as markers of lymphoid cells. II. Reed-Sternberg cells share lectin-binding properties of monocyte macrophages. Am J Pathol 1984; 116: 3706.
  • 25
    Sarker AB, Akagi T, Jeon HJ, Miyake K, Murakami I, Yoshino T, Takahashi K, Nose S. Bauhinia purpurea–a new paraffin section marker for Reed-Sternberg cells of Hodgkin's disease. A comparison with Leu-M1 (CD15), LN2 (CD74), peanut agglutinin, and Ber-H2 (CD30). Am J Pathol 1992; 141: 1923.
  • 26
    Hsu SM, Jaffe ES. Leu M1 and peanut agglutinin stain the neoplastic cells of Hodgkin's disease. Am J Clin Pathol 1984; 82: 2932.
  • 27
    Flavell DJ, Jones DB, Wright DH. Identification of peanut agglutinin binding glycoproteins restricted to Hodgkin's disease-derived cell lines. Hematol Oncol 1989; 7: 20717.
  • 28
    Wu AM, Song SC, Sugii S, Herp A. Differential binding properties of Gal/GalNAc specific lectins available for characterization of glycoreceptors. Indian J Biochem Biophys 1997; 34: 6171.
  • 29
    Swamy MJ, Gupta D, Mahanta SK, Surolia A. Further characterization of the saccharide specificity of peanut (Arachis hypogaea) agglutinin. Carbohydr Res 1991; 213: 5967.
  • 30
    Sharma V, Vijayan M, Surolia A. Imparting exquisite specificity to peanut agglutinin for the tumor-associated Thomsen-Friedenreich antigen by redesign of its combining site. J Biol Chem 1996; 271: 2120913.
  • 31
    Tzankov A, Zimpfer A, Went P, Maurer R, Pileri SA, Geley S, Dirnhofer S. Aberrant expression of cell cycle regulators in Hodgkin and Reed-Sternberg cells of classical Hodgkin's lymphoma. Mod Pathol 2005; 18: 906.
  • 32
    Zhuang D, Yousefi S, Dennis JW. Tn antigen and UDP-Gal:GalNAc α-R β 1-3Galactosyltransferase expression in human breast carcinoma. Cancer Biochem Biophys 1991; 12: 18598.
  • 33
    Felner KM, Dinter A, Cartron JP, Berger EG. Repressed β-1,3-galactosyltransferase in the Tn syndrome. Biochim Biophys Acta 1998; 1406: 11525.
  • 34
    Musgrove EA, Davison EA, Ormandy CJ. Role of the CDK inhibitor p27 (Kip1) in mammary development and carcinogenesis: insights from knockout mice. J Mammary Gland Biol Neoplasia 2004; 9: 5566.
  • 35
    Kolar Z, Flavell JR, Ehrmann J,Jr., Rihakova P, Macak J, Lowe D, Crocker J, Vojtesek B, Young LS, Murray PG. Apoptosis of malignant cells in Hodgkin's disease is related to expression of the cdk inhibitor p27KIP1. J Pathol 2000; 190: 60412.
  • 36
    Jaffe ES, Harris NL, Stein H, Vardiman J. World Health Organisation (WHO) classification of tumours-pathology & genetics-tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press (International Agency for Research on Cancer), 2001.
  • 37
    Suzuki N, Yamamoto K, Toyoshima S, Osawa T, Irimura T. Molecular cloning and expression of cDNA encoding human macrophage C-type lectin. Its unique carbohydrate binding specificity for Tn antigen. J Immunol 1996; 156: 12835.
  • 38
    Ichii S, Imai Y, Irimura T. Tumor site-selective localization of an adoptively transferred T cell line expressing a macrophage lectin. J Leukoc Biol 1997; 62: 76170.