• adhesion molecule on glia;
  • astrocytoma;
  • glioblastoma;
  • suppression subtractive hybridization;
  • tumor progression


To identify novel genes involved in glioma progression we performed suppression subtractive hybridization combined with cDNA array analysis on 4 patients with primary low-grade gliomas of World Health Organization (WHO) grade II that recurred as secondary glioblastomas (WHO grade IV). Eight genes showing differential expression between primary and recurrent tumors in 3 of the 4 patients were selected for further analysis using real-time reverse transcription-PCR on a series of 10 pairs of primary low-grade and recurrent high-grade gliomas as well as 42 astrocytic gliomas of different WHO grades. These analyses revealed that 5 genes, i.e., AMOG (ATP1B2, 17p13.1), APOD (3q26.2-qter), DMXL1 (5q23.1) DRR1 (TU3A, 3p14.2) and PSD3 (KIAA09428/HCA67/EFA6R, 8p22), were expressed at significantly lower levels in secondary glioblastomas as compared to diffuse astrocytomas of WHO grade II. In addition, AMOG, DRR1 and PSD3 transcript levels were significantly lower in primary glioblastomas than in diffuse astrocytomas. Treatment of glioma cell lines with 5-aza-2′-deoxycytidine and trichostatin A resulted in increased expression of AMOG and APOD transcripts. Sequencing of sodium bisulfite-modified DNA demonstrated AMOG promoter hypermethylation in the glioma cell lines and 1 primary anaplastic astrocytoma with low AMOG expression. Taken together, we identified interesting novel candidate genes that likely contribute to glioma progression and provide first evidence for a role of epigenetic silencing of AMOG in malignant glioma cells. © 2006 Wiley-Liss, Inc.