SEARCH

SEARCH BY CITATION

References

  • 1
    Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, Reynolds FH,Jr, Stephenson JR. Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci USA 1983; 80: 421822.
  • 2
    Jansen HW, Patschinsky T, Bister K. Avian oncovirus MH2: molecular cloning of proviral DNA and structural analysis of viral RNA and protein. J Virol 1983; 48: 6173.
  • 3
    Jansen HW, Ruckert B, Lurz R, Bister K. Two unrelated cell-derived sequences in the genome of avian leukemia and carcinoma inducing retrovirus MH2. EMBO J 1983; 2: 196975.
  • 4
    Jansen HW, Lurz R, Bister K, Bonner TI, Mark GE, Rapp UR. Homologous cell-derived oncogenes in avian carcinoma virus MH2 and murine sarcoma virus 3611. Nature 1984; 307: 2814.
  • 5
    Sutrave P, Bonner TI, Rapp UR, Jansen HW, Patschinsky T, Bister K. Nucleotide sequence of avian retroviral oncogene v-mil: homologue of murine retroviral oncogene v-raf. Nature 1984; 309: 858.
  • 6
    Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol 2004; 5: 87585.
  • 7
    Rapp UR, Reynolds FH,Jr, Stephenson JR. New mammalian transforming retrovirus: demonstration of a polyprotein gene product. J Virol 1983; 45: 91424.
  • 8
    Mark GE, Rapp UR. Primary structure of v-raf: relatedness to the src family of oncogenes. Science 1984; 224: 2859.
  • 9
    Moelling K, Heimann B, Beimling P, Rapp UR, Sander T. Serine- and threonine-specific protein kinase activities of purified gag-mil and gag-raf proteins. Nature 1984; 312: 55861.
  • 10
    Sutrave P, Jansen HW, Bister K, Rapp UR. 3′-Terminal region of avian carcinoma virus MH2 shares sequence elements with avian sarcoma viruses Y73 and SR-A. J Virol 1984; 52: 7035.
  • 11
    Rapp UR, Cleveland JL, Storm SM, Beck TW, Huleihel M. Transformation by raf and myc oncogenes. Princess Takamatsu Symp 1986; 17: 5574.
  • 12
    Roberts TM, Kaplan D, Morgan W, Keller T, Mamon H, Piwnica-Worms H, Druker B, Cohen B, Schaffhausen B, Whitman M, Cantley L, Raap UR, et al. Tyrosine phosphorylation in signal transduction. Cold Spring Harb Symp Quant Biol 1988; 53: 16171.
  • 13
    Rapp UR, Heidecker G, Huleihel M, Cleveland JL, Choi WC, Pawson T, Ihle JN, Anderson WB. Raf family serine/threonine protein kinases in mitogen signal transduction. Cold Spring Harb Symp Quant Biol 1988; 53: 17384.
  • 14
    Blasi E, Mathieson BJ, Varesio L, Cleveland JL, Borchert PA, Rapp UR. Selective immortalization of murine macrophages from fresh bone marrow by a raf/myc recombinant murine retrovirus. Nature 1985; 318: 66770.
  • 15
    Rapp UR, Bonner TI, Moelling K, Jansen HW, Bister K, Ihle J. Genes and gene products involved in growth regulation of tumor cells. Recent Results Cancer Res 1985; 99: 22136.
  • 16
    Rapp UR, Cleveland JL, Brightman K, Scott A, Ihle JN. Abrogation of IL-3 and IL-2 dependence by recombinant murine retroviruses expressing v-myc oncogenes. Nature 1985; 317: 4348.
  • 17
    Rapp UR, Bonner TI, Cleveland JL. The raf oncogene. In: Gallo RC, Stehelin D, Varnier OE, eds. Retroviruses and human pathology. Clifton, New Jersey: Humana Press, 1986, 44972.
  • 18
    Rapp UR, Cleveland JL, Fredrickson TN, Holmes KL, Morse HC,III, Jansen HW, Patschinsky T, Bister K. Rapid induction of hemopoietic neoplasms in newborn mice by a raf(mil)/myc recombinant murine retrovirus. J Virol 1985; 55: 2333.
  • 19
    Troppmair J, Potter M, Wax JS, Rapp UR. An altered v-raf is required in addition to v-myc in J3V1 virus for acceleration of murine plasmacytomagenesis. Proc Natl Acad Sci USA 1989; 86: 99415.
  • 20
    Rapp UR, Bruder JT, Troppmair J. Role of the raf signal transduction pathway in Fos/Jun regulation and determination of cell fates. In: Angel PE, Herrlich PA, eds. The FOS and JUN families of transcription factors. Boca Raton: CRC Press, 1994, 22147.
  • 21
    Principato M, Klinken SP, Cleveland JL, Rapp UR, Holmes KL, Pierce JH, Morse HC,III. In vitro transformation of murine bone marrow cells with a v-raf/v-myc retrovirus yields clonally related mature B cells and macrophages. Curr Top Microbiol Immunol 1988; 141: 3141.
  • 22
    Principato M, Cleveland JL, Rapp UR, Holmes KL, Pierce JH, Morse HC,III, Klinken SP. Transformation of murine bone marrow cells with combined v-raf-v-myc oncogenes yields clonally related mature B cells and macrophages. Mol Cell Biol 1990; 10: 35628.
  • 23
    Fedorov LM, Papadopoulos T, Tyrsin OY, Twardzik T, Goetz R, Rapp UR. Loss of p53 in craf-induced transgenic lung adenoma leads to tumor acceleration and phenotypic switch. Cancer Res 2003; 63: 226877.
  • 24
    Heidecker G, Huleihel M, Cleveland JL, Kolch W, Beck TW, Lloyd P, Pawson T, Rapp UR. Mutational activation of c-raf-1 and definition of the minimal transforming sequence. Mol Cell Biol 1990; 10: 250312.
  • 25
    Kolch W, Cleveland JL, Rapp UR. Role of oncogenes in the abrogation of growth factor requirements of hemopoietic cells. In: Paukovits WR, ed. Growth regulation and cancerogenesis. Boca Raton: CRC Press, 1991, 279303.
  • 26
    Bruder JT, Heidecker G, Rapp UR. Serum-, TPA-, and Ras-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. Genes Dev 1992; 6: 54556.
  • 27
    Zhang XF, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT, Rapp UR, Avruch J. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 1993; 364: 30813.
  • 28
    Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, Rapp UR, Avruch J. Raf-1 activates MAP kinase-kinase. Nature 1992; 358: 41721.
  • 29
    Howe LR, Leevers SJ, Gomez N, Nakielny S, Cohen P, Marshall CJ. Activation of the MAP kinase pathway by the protein kinase raf. Cell 1992; 71: 33542.
  • 30
    Dent P, Haser W, Haystead TA, Vincent LA, Roberts TM, Sturgill TW. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 1992; 257: 14047.
  • 31
    Huleihel M, Goldsborough M, Cleveland J, Gunnell M, Bonner T, Rapp UR. Characterization of murine A-raf, a new oncogene related to the v-raf oncogene. Mol Cell Biol 1986; 6: 265562.
  • 32
    Huebner K, Rushdi AA, Griffin CA, Isobe M, Kozak C, Emanuel BS, Nagarajan L, Cleveland JL, Bonner TI, Goldsborough MD, Croce CM, Raap UR. Actively transcribed genes in the raf oncogene group, located on the X chromosome in mouse and human. Proc Natl Acad Sci USA 1986; 83: 39348.
  • 33
    Beck TW, Huleihel M, Gunnell M, Bonner TI, Rapp UR. The complete coding sequence of the human A-raf-1 oncogene and transforming activity of a human A-raf carrying retrovirus. Nucleic Acids Res 1987; 15: 595609.
  • 34
    Ikawa S, Fukui M, Ueyama Y, Tamaoki N, Yamamoto T, Toyoshima K. B-raf, a new member of the raf family, is activated by DNA rearrangement. Mol Cell Biol 1988; 8: 26514.
  • 35
    Sithanandam G, Kolch W, Duh FM, Rapp UR. Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies. Oncogene 1990; 5: 177580.
  • 36
    Daum G, Eisenmann-Tappe I, Fries HW, Troppmair J, Rapp UR. The ins and outs of Raf kinases. Trends Biochem Sci 1994; 19: 47480.
  • 37
    Hagemann C, Rapp UR. Isotype-specific functions of Raf kinases. Exp Cell Res 1999; 253: 3446.
  • 38
    Chong H, Vikis HG, Guan KL. Mechanisms of regulating the Raf kinase family. Cell Signal 2003; 15: 4639.
  • 39
    Storm SM, Rapp UR. Oncogene activation: c-raf-1 gene mutations in experimental and naturally occurring tumors. Toxicol Lett 1993; 67: 20110.
  • 40
    Cleveland JL, Troppmair J, Packham G, Askew DS, Lloyd P, Gonzalez-Garcia M, Nunez G, Ihle JN, Rapp UR. v-Raf suppresses apoptosis and promotes growth of interleukin-3-dependent myeloid cells. Oncogene 1994; 9: 221726.
  • 41
    Wang HG, Rapp UR, Reed JC. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 1996; 87: 62938.
  • 42
    Wang HG, Takayama S, Rapp UR, Reed JC. Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc Natl Acad Sci USA 1996; 93: 70638.
  • 43
    Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 1997; 17: 5598611.
  • 44
    Kerkhoff E, Rapp UR. High-intensity Raf signals convert mitotic cell cycling into cellular growth. Cancer Res 1998; 58: 163640.
  • 45
    Li S, Sedivy JM. Raf-1 protein kinase activates the NF-K B transcription factor by dissociating the cytoplasmic NF-K B-I K B complex. Proc Natl Acad Sci USA 1993; 90: 924751.
  • 46
    Baumann B, Weber CK, Troppmair J, Whiteside S, Israel A, Rapp UR, Wirth T. Raf induces NF-KB by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation. Proc Natl Acad Sci USA 2000; 97: 461520.
  • 47
    Baccarini M. Second nature: biological functions of the Raf-1 “kinase”. FEBS Lett 2005; 579: 32717.
  • 48
    O'Neill E, Rushworth L, Baccarini M, Kolch W. Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1. Science 2004; 306: 226770.
  • 49
    Chen J, Fujii K, Zhang L, Roberts T, Fu H. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA 2001; 98: 77838.
  • 50
    Ehrenreiter K, Piazzolla D, Velamoor V, Sobczak I, Small JV, Takeda J, Leung T, Baccarini M. Raf-1 regulates Rho signaling and cell migration. J Cell Biol 2005; 168: 95564.
  • 51
    Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 2005; 6: 82737.
  • 52
    Rapp UR, Gotz R, Albert S. BuCy RAFs drive cells into MEK addiction. Cancer Cell 2006; 9: 912.
  • 53
    Zebisch A, Troppmair J. Back to the roots: the remarkable RAF oncogene story. Cell Mol Life Sci 2006; 63: 131430.
  • 54
    Rajalingam K, Wunder C, Brinkmann V, Churin Y, Hekman M, Sievers C, Rapp UR, Rudel T. Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat Cell Biol 2005; 7: 83743.
  • 55
    Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, Fried M, McCormick F. A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. Mol Cell 2006; 22: 21730.
  • 56
    Douziech M, Sahmi M, Laberge G, Therrien M. A KSR/CNK complex mediated by HYP, a novel SAM domain-containing protein, regulates RAS-dependent RAF activation in Drosophila. Genes Dev 2006; 20: 80719.
  • 57
    Luo Z, Tzivion G, Belshaw PJ, Vavvas D, Marshall M, Avruch J. Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature 1996; 383: 1815.
  • 58
    Farrar MA, Alberol I, Perlmutter RM. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 1996; 383: 17881.
  • 59
    Weber CK, Slupsky JR, Kalmes HA, Rapp UR. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res 2001; 61: 35958.
  • 60
    Chadee DN, Xu D, Hung G, Andalibi A, Lim DJ, Luo Z, Gutmann DH, Kyriakis JM. Mixed-lineage kinase 3 regulates B-Raf through maintenance of the B-Raf/Raf-1 complex and inhibition by the NF2 tumor suppressor protein. Proc Natl Acad Sci USA 2006; 103: 44638.
  • 61
    Rushworth LK, Hindley AD, O'Neill E, Kolch W. Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol 2006; 26: 226272.
  • 62
    Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004; 116: 85567.
  • 63
    Garnett MJ, Rana S, Paterson H, Barford D, Marais R. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 2005; 20: 9639.
  • 64
    Hirst GL, Balmain A. Forty years of cancer modelling in the mouse. Eur J Cancer 2004; 40: 197480.
  • 65
    Maddison K, Clarke AR. New approaches for modelling cancer mechanisms in the mouse. J Pathol 2005; 205: 18193.
  • 66
    Holland EC. Mouse models of human cancer as tools in drug development. Cancer Cell 2004; 6: 1978.
  • 67
    Morse HC,III, Rapp UR. Tumorigenic activity of artificially activated oncogenes. In: Klein G, ed. Cellular oncogene activation. New York: Marcel Dekker, 1988; 41: 33564.
  • 68
    Jaworski M, Buchmann A, Bauer P, Riess O, Schwarz M. B-raf and Ha-ras mutations in chemically induced mouse liver tumors. Oncogene 2005; 24: 12905.
  • 69
    Collier LS, Carlson CM, Ravimohan S, Dupuy AJ, Largaespada DA. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 2005; 436: 2726.
  • 70
    Kerkhoff E, Fedorov LM, Siefken R, Walter AO, Papadopoulos T, Rapp UR. Lung-targeted expression of the c-Raf-1 kinase in transgenic mice exposes a novel oncogenic character of the wild-type protein. Cell Growth Differ 2000; 11: 18590.
  • 71
    Rapp UR, Fensterle J, Albert S, Goetz R. Raf kinases in lung tumor development. Adv Enzyme Regul 2003; 43: 18395.
  • 72
    Fedorov LM, Tyrsin OY, Papadopoulos T, Camarero G, Goetz R, Rapp UR. Bcl-2 determines susceptibility to induction of lung cancer by oncogenic CRaf. Cancer Res 2002; 62: 6297303.
  • 73
    Goetz R, Kramer BW, Camarero G, Rapp UR. BAG-1 haplo-insufficiency impairs lung tumorigenesis. BMC Cancer 2004; 4: 85.
  • 74
    Kramer BW, Goetz R, Rapp UR. Use of mitogenic cascade blockers for treatment of C-Raf induced lung adenoma in vivo: CI-1040 strongly reduces growth and improves lung structure. BMC Cancer 2004; 4: 24.
  • 75
    Goetz R, Wiese S, Takayama S, Camarero GC, Rossoll W, Schweizer U, Troppmair J, Jablonka S, Holtmann B, Reed JC, Rapp UR, Sendtner M. Bag1 is essential for differentiation and survival of hematopoietic and neuronal cells. Nat Neurosci 2005; 8: 116978.
  • 76
    Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 35364.
  • 77
    Knauf JA, Ma X, Smith EP, Zhang L, Mitsutake N, Liao XH, Refetoff S, Nikiforov YE, Fagin JA. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 2005; 65: 423845.
  • 78
    Mercer K, Giblett S, Green S, Lloyd D, Dias SD, Plumb M, Marais R, Pritchard C. Expression of endogenous oncogenic V600EB-raf induces proliferation and developmental defects in mice and transformation of primary fibroblasts. Cancer Res 2005; 65: 11493500.
  • 79
    Konopleva M, Shi Y, Steelman LS, Shelton JG, Munsell M, Marini F, McQueen T, Contractor R, McCubrey JA, Andreeff M. Development of a conditional in vivo model to evaluate the efficacy of small molecule inhibitors for the treatment of Raf-transformed hematopoietic cells. Cancer Res 2005; 65: 996270.
  • 80
    Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, Shimada Y, Ari-i S, Wada H, Fujimoto J, Kohno M. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene 1999; 18: 81322.
  • 81
    Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer 2003; 3: 45965.
  • 82
    McPhillips F, Mullen P, Monia BP, Ritchie AA, Dorr FA, Smyth JF, Langdon SP. Association of c-Raf expression with survival and its targeting with antisense oligonucleotides in ovarian cancer. Br J Cancer 2001; 85: 17538.
  • 83
    Fransen K, Klintenas M, Osterstrom A, Dimberg J, Monstein HJ, Soderkvist P. Mutation analysis of the BRAF, ARAF and RAF-1 genes in human colorectal adenocarcinomas. Carcinogenesis 2004; 25: 52733.
  • 84
    Lee JW, Soung YH, Kim SY, Park WS, Nam SW, Min WS, Kim SH, Lee JY, Yoo NJ, Lee SH. Mutational analysis of the ARAF gene in human cancers. APMIS 2005; 113: 547.
  • 85
    Emuss V, Garnett M, Mason C, Marais R. Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF. Cancer Res 2005; 65: 971926.
  • 86
    Garnett MJ, Marais R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell 2004; 6: 31319.
  • 87
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 94954.
  • 88
    Satyamoorthy K, Li G, Gerrero MR, Brose MS, Volpe P, Weber BL, Van Belle P, Elder DE, Herlyn M. Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res 2003; 63: 7569.
  • 89
    Ikenoue T, Hikiba Y, Kanai F, Tanaka Y, Imamura J, Imamura T, Ohta M, Ijichi H, Tateishi K, Kawakami T, Aragaki J, Matsumura M, et al. Functional analysis of mutations within the kinase activation segment of B-Raf in human colorectal tumors. Cancer Res 2003; 63: 81327.
  • 90
    Wellbrock C, Ogilvie L, Hedley D, Karasarides M, Martin J, Niculescu-Duvaz D, Springer CJ, Marais R. V599EB-RAF is an oncogene in melanocytes. Cancer Res 2004; 64: 233842.
  • 91
  • 92
    Dibb NJ, Dilworth SM, Mol CD. Switching on kinases: oncogenic activation of BRAF and the PDGFR family. Nat Rev Cancer 2004; 4: 71827.
  • 93
    Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, Golub TR, Sebolt-Leopold J, et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 2006; 439: 35862.
  • 94
    Ciampi R, Knauf JA, Kerler R, Gandhi M, Zhu Z, Nikiforova MN, Rabes HM, Fagin JA, Nikiforov YE. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest 2005; 115: 94101.
  • 95
    Ciampi R, Zhu Z, Nikiforov YE. BRAF copy number gains in thyroid tumors detected by fluorescence in situ hybridization. Endocr Pathol 2005; 16: 99105.
  • 96
    Zebisch A, Staber PB, Delavar A, Bodner C, Hiden K, Fischereder K, Janakiraman M, Linkesch W, Auner HW, Emberger W, Windpassinger C, Schimek MG, et al. Two transforming C-RAF germ-line mutations identified in patients with therapy-related acute myeloid leukemia. Cancer Res 2006; 66: 34018.
  • 97
    Niihori T, Aoki Y, Narumi Y, Neri G, Cave H, Verloes A, Okamoto N, Hennekam RC, Gillessen-Kaesbach G, Wieczorek D, Kavamura MI, Kurosawa K, et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet 2006; 38: 2946.
  • 98
    Rodriguez-Viciana P, Tetsu O, Tidyman WE, Estep AL, Conger BA, Cruz MS, McCormick F, Rauen KA. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 2006; 311: 128790.
  • 99
    Houben R, Becker JC, Kappel A, Terheyden P, Brocker EB, Goetz R, Rapp UR. Constitutive activation of the Ras-Raf signaling pathway in metastatic melanoma is associated with poor prognosis. J Carcinog 2004; 3: 6.
  • 100
    Dong J, Phelps RG, Qiao R, Yao S, Benard O, Ronai Z, Aaronson SA. BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res 2003; 63: 38835.
  • 101
    Samowitz WS, Sweeney C, Herrick J, Albertsen H, Levin TR, Murtaugh MA, Wolff RK, Slattery ML. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res 2005; 65: 60639.
  • 102
    Xing M, Westra WH, Tufano RP, Cohen Y, Rosenbaum E, Rhoden KJ, Carson KA, Vasko V, Larin A, Tallini G, Tolaney S, Holt EH et al. BRAF Mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 2005; 90: 63739.
  • 103
    Weir B, Zhao X, Meyerson M. Somatic alterations in the human cancer genome. Cancer Cell 2004; 6: 4338.
  • 104
    Gray-Schopfer VC, da Rocha Dias S, Marais R. The role of B-RAF in melanoma. Cancer Metastasis Rev 2005; 24: 16583.
  • 105
    Wong CW, Fan YS, Chan TL, Chan AS, Ho LC, Ma TK, Yuen ST, Leung SY. BRAF and NRAS mutations are uncommon in melanomas arising in diverse internal organs. J Clin Pathol 2005; 58: 6404.
  • 106
    Ciampi R, Knauf JA, Rabes HM, Fagin JA, Nikiforov YE. BRAF kinase activation via chromosomal rearrangement in radiation-induced and sporadic thyroid cancer. Cell Cycle 2005; 4: 5478.
  • 107
    Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 2005; 12: 24562.
  • 108
    Bell DA. Origins and molecular pathology of ovarian cancer. Mod Pathol 2005; 18 ( Suppl 2): S19S32.
  • 109
    Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004; 21: 13748.
  • 110
    Andersen MH, Fensterle J, Ugurel S, Reker S, Houben R, Guldberg P, Berger TG, Schadendorf D, Trefzer U, Brocker EB, Straten P, Rapp UR et al. Immunogenicity of constitutively active V599EBRaf. Cancer Res 2004; 64: 545660.
  • 111
    Somasundaram R, Swoboda R, Caputo L, Otvos L, Weber B, Volpe P, van Belle P, Hotz S, Elder DE, Marincola FM, Schuchter L, Guerry D, et al. Human leukocyte antigen-A2-restricted CTL responses to mutated BRAF peptides in melanoma patients. Cancer Res 2006; 66: 328793.
  • 112
    Sharkey MS, Lizee G, Gonzales MI, Patel S, Topalian SL. CD4+ T-cell recognition of mutated B-RAF in melanoma patients harboring the V599E mutation. Cancer Res 2004; 64: 15959.
  • 113
    Fensterle J, Becker JC, Potapenko T, Heimbach V, Vetter CS, Brocker EB, Rapp UR. B-Raf specific antibody responses in melanoma patients. BMC Cancer 2004; 4: 62.
  • 114
    Strumberg D, Seeber S. Raf kinase inhibitors in oncology. Onkologie 2005; 28: 1017.
  • 115
    Sridhar SS, Hedley D, Siu LL. Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther 2005; 4: 67785.
  • 116
    Thompson N, Lyons J. Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery. Curr Opin Pharmacol 2005; 5: 3506.
  • 117
    von Eschenbach AC. A vision for the national cancer program in the United States. Nat Rev Cancer 2004; 4: 8208.
  • 118
    Dumas J, Smith RA, Lowinger TB. Recent developments in the discovery of protein kinase inhibitors from the urea class. Curr Opin Drug Discov Devel 2004; 7: 60016.
  • 119
    Lowinger TB, Riedl B, Dumas J, Smith RA. Design and discovery of small molecules targeting raf-1 kinase. Curr Pharm Des 2002; 8: 226978.
  • 120
    Lee JT, McCubrey JA. BAY-43–9006 Bayer/Onyx. Curr Opin Investig Drugs 2003; 4: 75763.
  • 121
    Lyons JF, Wilhelm S, Hibner B, Bollag G. Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 2001; 8: 21925.
  • 122
    Wilhelm S, Chien DS. BAY 43–9006: preclinical data. Curr Pharm Des 2002; 8: 22557.
  • 123
    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099109.
  • 124
    Carlomagno F, Anaganti S, Guida T, Salvatore G, Troncone G, Wilhelm SM, Santoro M. BAY 43–9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst 2006; 98: 32634.
  • 125
    Salvatore G, De Falco V, Salerno P, Nappi TC, Pepe S, Troncone G, Carlomagno F, Melillo RM, Wilhelm SM, Santoro M. BRAF is a therapeutic target in aggressive thyroid carcinoma. Clin Cancer Res 2006; 12: 16239.
  • 126
    Lierman E, Folens C, Stover EH, Mentens N, Van Miegroet H, Scheers W, Boogaerts M, Vandenberghe P, Marynen P, Cools J. Sorafenib (BAY43–9006) is a potent inhibitor of FIP1L1-PDGFRα and the imatinib resistant FIP1L1-PDGFRα T674I mutant. Blood [Epub ahead of print].
  • 127
    Yu C, Bruzek LM, Meng XW, Gores GJ, Carter CA, Kaufmann SH, Adjei AA. The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43–9006. Oncogene 2005; 24: 68619.
  • 128
    Panka DJ, Wang W, Atkins MB, Mier JW. The Raf inhibitor BAY 43–9006 (Sorafenib) induces caspase-independent apoptosis in melanoma cells. Cancer Res 2006; 66: 161119.
  • 129
    Wright JJ, Zerivitz K, Gravell A. Clinical trials referral resource. Current clinical trials of BAY 43–9006, Part 1. Oncology (Huntingt) 2005; 19: 499502.
  • 130
    Wright JJ, Zerivitz K, Gravell A. Clinical trials referral resource. Current clinical trials of BAY 43–9006, Part 2. Oncology (Williston Park) 2005; 19: 7228.
  • 131
    Rini BI. Sorafenib. Expert Opin Pharmacother 2006; 7: 45361.
  • 132
    Kolch W, Heidecker G, Lloyd P, Rapp UR. Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature 1991; 349: 4268.
  • 133
    Monia BP, Sasmor H, Johnston JF, Freier SM, Lesnik EA, Muller M, Geiger T, Altmann KH, Moser H, Fabbro D. Sequence-specific antitumor activity of a phosphorothioate oligodeoxyribonucleotide targeted to human C-raf kinase supports an antisense mechanism of action in vivo. Proc Natl Acad Sci USA 1996; 93: 154814.
  • 134
    Monia BP, Johnston JF, Geiger T, Muller M, Fabbro D. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med 1996; 2: 66875.
  • 135
    Stevenson JP, Yao KS, Gallagher M, Friedland D, Mitchell EP, Cassella A, Monia B, Kwoh TJ, Yu R, Holmlund J, Dorr FA, O'Dwyer PJ. Phase I clinical/pharmacokinetic and pharmacodynamic trial of the c-raf-1 antisense oligonucleotide ISIS 5132 (CGP 69846A). J Clin Oncol 1999; 17: 222736.
  • 136
    Cunningham CC, Holmlund JT, Schiller JH, Geary RS, Kwoh TJ, Dorr A, Nemunaitis J. A phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res 2000; 6: 162631.
  • 137
    Rudin CM, Holmlund J, Fleming GF, Mani S, Stadler WM, Schumm P, Monia BP, Johnston JF, Geary R, Yu RZ, Kwoh TJ, Dorr FA, et al. Phase I trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-raf-1, administered by 24-hour weekly infusion to patients with advanced cancer. Clin Cancer Res 2001; 7: 121420.
  • 138
    Coudert B, Anthoney A, Fiedler W, Droz JP, Dieras V, Borner M, Smyth JF, Morant R, de Vries MJ, Roelvink M, Fumoleau P. Phase II trial with ISIS 5132 in patients with small-cell (SCLC) and non-small cell (NSCLC) lung cancer. A European Organization for Research and Treatment of Cancer (EORTC) early clinical studies group report. Eur J Cancer 2001; 37: 21948.
  • 139
    Cripps MC, Figueredo AT, Oza AM, Taylor MJ, Fields AL, Holmlund JT, McIntosh LW, Geary RS, Eisenhauer EA. Phase II randomized study of ISIS 3521 and ISIS 5132 in patients with locally advanced or metastatic colorectal cancer: a National Cancer Institute of Canada clinical trials group study. Clin Cancer Res 2002; 8: 218892.
  • 140
    Tolcher AW, Reyno L, Venner PM, Ernst SD, Moore M, Geary RS, Chi K, Hall S, Walsh W, Dorr A, Eisenhauer E. A randomized phase II and pharmacokinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer. Clin Cancer Res 2002; 8: 25305.
  • 141
    Oza AM, Elit L, Swenerton K, Faught W, Ghatage P, Carey M, McIntosh L, Dorr A, Holmlund JT, Eisenhauer E. Phase II study of CGP 69846A (ISIS 5132) in recurrent epithelial ovarian cancer: an NCIC clinical trials group study (NCIC IND. 116). Gynecol Oncol 2003; 89: 12933.
  • 142
    Mullen P, McPhillips F, Monia BP, Smyth JF, Langdon SP. Comparison of strategies targeting Raf-1 mRNA in ovarian cancer. Int J Cancer 2006; 118: 156571.
  • 143
    Gokhale PC, Zhang C, Newsome JT, Pei J, Ahmad I, Rahman A, Dritschilo A, Kasid UN. Pharmacokinetics, toxicity, and efficacy of ends-modified raf antisense oligodeoxyribonucleotide encapsulated in a novel cationic liposome. Clin Cancer Res 2002; 8: 361121.
  • 144
    Rudin CM, Marshall JL, Huang CH, Kindler HL, Zhang C, Kumar D, Gokhale PC, Steinberg J, Wanaski S, Kasid UN, Ratain MJ. Delivery of a liposomal c-raf-1 antisense oligonucleotide by weekly bolus dosing in patients with advanced solid tumors: a phase I study. Clin Cancer Res 2004; 10: 724451.
  • 145
    Dritschilo A, Huang CH, Rudin CM, Marshall J, Collins B, Dul JL, Zhang C, Kumar D, Gokhale PC, Ahmad A, Ahmad I, Sherman JW et al. Phase I study of liposome-encapsulated c-raf antisense oligodeoxyribonucleotide infusion in combination with radiation therapy in patients with advanced malignancies. Clin Cancer Res 2006; 12: 12519.
  • 146
    Hingorani SR, Jacobetz MA, Robertson GP, Herlyn M, Tuveson DA. Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Res 2003; 63: 5198202.
  • 147
    Sumimoto H, Miyagishi M, Miyoshi H, Yamagata S, Shimizu A, Taira K, Kawakami Y. Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 2004; 23: 60319.
  • 148
    Karasarides M, Chiloeches A, Hayward R, Niculescu-Duvaz D, Scanlon I, Friedlos F, Ogilvie L, Hedley D, Martin J, Marshall CJ, Springer CJ, et al. B-RAF is a therapeutic target in melanoma. Oncogene 2004; 23: 62928.
  • 149
    Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP. Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 2005; 65: 241221.
  • 150
    Pal A, Ahmad A, Khan S, Sakabe I, Zhang C, Kasid UN, Ahmad I. Systemic delivery of RafsiRNA using cationic cardiolipin liposomes silences Raf-1 expression and inhibits tumor growth in xenograft model of human prostate cancer. Int J Oncol 2005; 26: 108791.
  • 151
    Leng Q, Mixson AJ. Small interfering RNA targeting Raf-1 inhibits tumor growth in vitro and in vivo. Cancer Gene Ther 2005; 12: 68290.
  • 152
    Miyata Y. Hsp90 inhibitor geldanamycin and its derivatives as novel cancer chemotherapeutic agents. Curr Pharm Des 2005; 11: 11318.
  • 153
    Workman P. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 2004; 206: 14957.
  • 154
    Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003; 425: 40710.
  • 155
    Supko JG, Hickman RL, Grever MR, Malspeis L. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 1995; 36: 30515.
  • 156
    Budillon A, Bruzzese F, Di Gennaro E, Caraglia M. Multiple-target drugs: inhibitors of heat shock protein 90 and of histone deacetylase. Curr Drug Targets 2005; 6: 33751.
  • 157
    da Rocha Dias S, Friedlos F, Light Y, Springer C, Workman P, Marais R. Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res 2005; 65: 1068691.
  • 158
    Grbovic OM, Basso AD, Sawai A, Ye Q, Friedlander P, Solit D, Rosen N. V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc Natl Acad Sci USA 2006; 103: 5762.
  • 159
    Smith V, Sausville EA, Camalier RF, Fiebig HH, Burger AM. Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: effects on Hsp90 and client proteins in melanoma models. Cancer Chemother Pharmacol 2005; 56: 12637.
  • 160
    Hollingshead M, Alley M, Burger AM, Borgel S, Pacula-Cox C, Fiebig HH, Sausville EA. In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative. Cancer Chemother Pharmacol 2005; 56: 11525.
  • 161
    Sittler A, Lurz R, Lueder G, Priller J, Lehrach H, Hayer-Hartl MK, Hartl FU, Wanker EE. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum Mol Genet 2001; 10: 130715.
  • 162
    Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer 2005; 5: 76172.
  • 163
    Guo F, Rocha K, Bali P, Pranpat M, Fiskus W, Boyapalle S, Kumaraswamy S, Balasis M, Greedy B, Armitage ES, Lawrence N, Bhalla K. Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res 2005; 65: 1053644.
  • 164
    Calderwood SK, Theriault JR, Gong J. Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol 2005; 35: 251827.
  • 165
    Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 2005; 45: 495528.
  • 166
    Acharya MR, Sparreboom A, Venitz J, Figg WD. Rational development of histone deacetylase inhibitors as anti-cancer agents: a review. Mol Pharmacol 2005; 68: 91732.
  • 167
    Villar-Garea A, Esteller M. Histone deacetylase inhibitors: understanding a new wave of anticancer agents. Int J Cancer 2004; 112: 1718.
  • 168
    Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T, Akiyama M, Chauhan D, Munshi N, Gu X, Bailey C, Joseph M, et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 2004; 101: 5405.
  • 169
    Fuino L, Bali P, Wittmann S, Donapaty S, Guo F, Yamaguchi H, Wang HG, Atadja P, Bhalla K. Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther 2003; 2: 97184.
  • 170
    Yu C, Rahmani M, Almenara J, Subler M, Krystal G, Conrad D, Varticovski L, Dent P, Grant S. Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res 2003; 63: 211826.
  • 171
    Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P, Seto E, Bhalla K. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis of antileukemia activity of histone deacetylase inhibitors. J Biol Chem 2005; 280: 2672934.
  • 172
    Blattman JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses. Science 2004; 305: 2005.
  • 173
    Mahnke YD, Speiser D, Luescher IF, Cerottini JC, Romero P. Recent advances in tumour antigen-specific therapy: in vivo veritas. Int J Cancer 2005; 113: 1738.
  • 174
    Robubi A, Mueller T, Fueller J, Hekman M, Rapp UR, Dandekar T. B-Raf and C-Raf signaling investigated in a simplified model of the mitogenic kinase cascade. Biol Chem 2005; 386: 116571.
  • 175
    Orton RJ, Sturm OE, Vyshemirsky V, Calder M, Gilbert DR, Kolch W. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J 2005; 392: 24961.
  • 176
    Strumberg D. Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment. Drugs Today (Barc) 2005; 41: 77384.
  • 177
    Tsai J, Zhang J, Bremer R, Artis R, Hirth P, Bollag G. Development of a novel inhibitor of oncogenic B-Raf. In the 97th AACR annual meeting, Washington DC, 2006. Abstract No 2412.
  • 178
    Amiri P, Aikawa ME, Dove J, Stuart DD, Poon D, Pick T, Ramurthy S, Subramanian S, Levine B, Costales A, Harris A, Paul R. CHIR-265 is a potent selective inhibitor of c-Raf/B-Raf/mutB-Raf that effectively inhibits proliferation and survival of cancer cell lines with Ras/Raf pathway mutations. In the 97th AACR annual meeting, Washington DC, 2006. Abstract No 4855.
  • 179
    Stuart DS, Aardalen KM, Lorenzana EG, Salangsang FD, Venetsanakos E, Tan N, Zhang W, Garrett E, Jallal B, Mendel DB. Characterization of a novel Raf kinase inhibitor that causes target dependent tumor regression in human melanoma xenografts expressing mutant B-Raf. In the 97th AACR annual meeting, Washington DC, 2006. Abstract No 4856.
  • 180
    Venetsanakos E, Stuart D, Tan N, Ye H, Salangsang F, Aardalen K, Faure M, Heise C, Mendel D, Jallal B. CHIR-265, a novel inhibitor that targets B-Raf and VEGFR, shows efficacy in a broad range of preclinical models. In the 97th AACR annual meeting, Washington DC, 2006. Abstract No 4854.
  • 181
    Niculescu-Duvaz I, Roman E, Whittaker SR, Friedlos F, Kirk R, Scanlon IJ, Davies LC, Niculescu-Duvaz D, Marais R, Springer CJ. Novel inhibitors of B-RAF based on a disubstituted pyrazine scaffold. Generation of a nanomolar lead. J Med Chem 2006; 49: 40716.
  • 182
    Newbatt Y, Burns S, Hayward R, Whittaker S, Kirk R, Marshall C, Springer C, McDonald E, Marais R, Workman P, Aherne W. Identification of inhibitors of the kinase activity of oncogenic V600E BRAF in an enzyme cascade high-throughput screen. J Biomol Screen 2006; 11: 14554.
  • 183
    Takle AK, Brown MJ, Davies S, Dean DK, Francis G, Gaiba A, Hird AW, King FD, Lovell PJ, Naylor A, Reith AD, Steadman JG, et al. The identification of potent and selective imidazole-based inhibitors of B-Raf kinase. Bioorg Med Chem Lett 2006; 16: 37881.
  • 184
    Ouyang B, Knauf JA, Smith EP, Zhang L, Ramsey T, Yusuff N, Batt D, Fagin JA. Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clin Cancer Res 2006; 12: 178593.
  • 185
    Khire UR, Bankston D, Barbosa J, Brittelli DR, Caringal Y, Carlson R, Dumas J, Gane T, Heald SL, Hibner B, Johnson JS, Katz ME, et al. Omega-carboxypyridyl substituted ureas as Raf kinase inhibitors: SAR of the amide substituent. Bioorg Med Chem Lett 2004; 14: 7836.
  • 186
    Lackey K, Cory M, Davis R, Frye SV, Harris PA, Hunter RN, Jung DK, McDonald OB, McNutt RW, Peel MR, Rutkowske RD, Veal JM, et al. The discovery of potent cRaf1 kinase inhibitors. Bioorg Med Chem Lett 2000; 10: 2236.
  • 187
    Hall-Jackson CA, Eyers PA, Cohen P, Goedert M, Boyle FT, Hewitt N, Plant H, Hedge P. Paradoxical activation of Raf by a novel Raf inhibitor. Chem Biol 1999; 6: 55968.
  • 188
    Heimbrook DC, Huber HE, Stirdivant SM, Claremon D, Liverton N, Patrick DR, Selnick H, Ahern J, Conroy R, Drakas R, Falconi N, Hancock P, et al. Identification of potent, selective kinase inhibitors of Raf. Am Assoc Cancer Res 1998; 39: 558. [Abstract No 3793].
  • 189
    Peterson JR, Bickford LC, Morgan D, Kim AS, Ouerfelli O, Kirschner MW, Rosen MK. Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation. Nat Struct Mol Biol 2004; 11: 74755.
  • 190
    Loregian A, Palu G. Disruption of protein-protein interactions: towards new targets for chemotherapy. J Cell Physiol 2005; 204: 75062.
  • 191
  • 192
    Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D, Zhu Z, Ciampi R, Roh M, Shedden K, Gauger P, Doherty G, et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 2005; 24: 664656.
  • 193
    Kim IJ, Kang HC, Jang SG, Kim K, Ahn SA, Yoon HJ, Yoon SN, Park JG. Oligonucleotide microarray analysis of distinct gene expression patterns in colorectal cancer tissues harboring BRAF and K-ras mutations. Carcinogenesis 2006; 27: 392404.
  • 194
    Park IK, Morrison SJ, Clarke MF. Bmi1, stem cells, and senescence regulation. J Clin Invest 2004; 113: 1759.
  • 195
    Voncken JW, Niessen H, Neufeld B, Rennefahrt U, Dahlmans V, Kubben N, Holzer B, Ludwig S, Rapp UR. MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1. J Biol Chem 2005; 280: 517887.