SEARCH

SEARCH BY CITATION

References

  • 1
    Waggoner SE. Cervical cancer. Lancet 2003; 361: 221725.
  • 2
    El-Ghobashy AA, Shaaban AM, Herod J, Herrington CS. The pathology and management of endocervical glandular neoplasia. Int J Gynecol Cancer 2005; 15: 58392.
  • 3
    Herrington CS, Wells M. Premalignant and malignant squamous lesions of the cervix. In: FoxH, WellsM, eds. Haines and Taylor obstetrical and gynaecological pathology, 5th edn. Edinburgh: Churchill Livingstone, 2002. 297338.
  • 4
    Mahadevan A, Mitchell MF, Silva E, Thomsen S, Richards-Kortum RR. Study of the fluorescence properties of normal and neoplastic human cervical tissue. Lasers Surg Med 1993; 13: 64755.
  • 5
    Richards-Kortum R, Mitchell MF, Ramanujam N, Mahadevan A, Thomsen S. In vivo fluorescence spectroscopy: potential for non-invasive, automated diagnosis of cervical intraepithelial neoplasia and use as a surrogate endpoint biomarker. J Cell Biochem Suppl 1994; 19: 11119.
  • 6
    Ramanujam N, Mitchell MF, Mahadevan-Jansen A, Thomsen SL, Staerkel G, Malpica A, Wright T, Atkinson N, Richards-Kortum R. Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths. Photochem Photobiol 1996; 64: 72035.
  • 7
    Chang SK, Follen M, Malpica A, Utzinger U, Staerkel G, Cox D, Atkinson EN, MacAulay C, Richards-Kortum R. Optimal excitation wavelengths for discrimination of cervical neoplasia. IEEE Trans Biomed Eng 2002; 49: 110211.
  • 8
    Chang SK, Mirabal YN, Atkinson EN, Cox D, Malpica A, Follen M, Richards-Kortum R. Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer. J Biomed Opt 2005; 10: 024031.
  • 9
    Brookner C, Utzinger U, Follen M, Richards-Kortum R, Cox D, Atkinson EN. Effects of biographical variables on cervical fluorescence emission spectra. J Biomed Opt 2003; 8: 47983.
  • 10
    Rahman M, Abd-El-Barr M, Mack V, Tkaczyk T, Sokolov K, Richards-Kortum R, Descour M. Optical imaging of cervical pre-cancers with structured illumination: an integrated approach. Gynecol Oncol 2005; 99: S11215.
  • 11
    Brookner CK, Follen M, Boiko I, Galvan J, Thomsen S, Malpica A, Suzuki S, Lotan R, Richards-Kortum R. Autofluorescence patterns in short-term cultures of normal cervical tissue. Photochem Photobiol 2000; 71: 7306.
  • 12
    Mitchell MF, Cantor SB, Ramanujam N, Tortolero-Luna G, Richards-Kortum R. Fluorescence spectroscopy for diagnosis of squamous intraepithelial lesions of the cervix. Obstet Gynecol 1999; 93: 46270.
  • 13
    Drezek R, Sokolov K, Utzinger U, Boiko I, Malpica A, Follen M, Richards-Kortum R. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications. J Biomed Opt 2001; 6: 38596.
  • 14
    Ramanujam N, Mitchell MF, Mahadevan A, Warren S, Thomsen S, Silva E, Richards-Kortum R. In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence. Proc Natl Acad Sci USA 1994; 91: 101937.
  • 15
    Atkinson EN. Age and FSH effects in fluorescence spectra from the cervix: an exploratory analysis. Gynecol Oncol 2005; 99: S95S97.
  • 16
    Maas-Szabowski N, Starker A, Fusenig NE. Epidermal tissue regeneration and stromal interaction in HaCaT cells is initiated by TGF-α. J Cell Sci 2003; 116: 293748.
  • 17
    Maas-Szabowski N, Szabowski A, Stark HJ, Andrecht S, Kolbus A, Schorpp-Kistner M, Angel P, Fusenig NE. Organotypic cocultures with genetically modified mouse fibroblasts as a tool to dissect molecular mechanisms regulating keratinocyte growth and differentiation. JInvest Dermatol 2001; 116: 81620.
  • 18
    Southern SA, Lewis MH, Herrington CS. Induction of tetrasomy by human papillomavirus type 16 E7 protein is independent of pRb binding and disruption of differentiation. Br J Cancer 2004; 90: 194954.
  • 19
    Steenbergen RD, Parker JN, Isern S, Snijders PJ, Walboomers JM, Meijer CJ, Broker TR, Chow LT. Viral E6-E7 transcription in the basal layer of organotypic cultures without apparent p21cip1 protein precedes immortalization of human papillomavirus type 16- and 18-transfected human keratinocytes. J Virol 1998; 72: 74957.
  • 20
    Southern SA, Noya F, Meyers C, Broker TR, Chow LT, Herrington CS. Tetrasomy is induced by human papillomavirus type 18 E7 gene expression in keratinocyte raft cultures. Cancer Res 2001; 61: 485863.
  • 21
    Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci USA 1979; 76: 56658.
  • 22
    Harris A. Epithelial cell culture. Cambridge: Cambridge University Press, 1996.
  • 23
    Stark HJ, Szabowski A, Fusenig NE, Maas-Szabowski N. Organotypic cocultures as skin equivalents: a complex and sophisticated in vitro system. Biol Proced Online 2004; 6: 5560.
  • 24
    Maclean A. The use of acetic acid in the diagnosis of cervical neoplasia. In: MacleanA, SingerH, CritchleyH, eds. Lower genital tract neoplasia. London: Royal College of Obstetricians and Gynaecologists Press, 2003. 14654.
  • 25
    Bomfim-Hyppolito S, Franco ES, Franco RGD, de Albuquerque CM, Nunes GC. Cervicography as an adjunctive test to visual inspection with acetic acid in cervical cancer detection screening. Int J Gynecol Obstet 2006; 92: 5863.
  • 26
    Orfanoudaki IM, Themelis GC, Sifakis SK, Fragouli DH, Panayiotides JG, Vazgiouraki EM, Koumantakis EE. A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system. Gynecol Oncol 2005; 96: 11931.
  • 27
    Balas C. A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix. IEEE Trans Biomed Eng 2001; 48: 96104.
  • 28
    Wu TT, Qu JNY, Cheung TH, Yim SF, Wong YF. Study of dynamic process of acetic acid induced-whitening in epithelial tissues at cellular level. Opt Express 2005; 13: 496373.
  • 29
    Friedl F, Kimura I, Osato T, Ito Y. Studies on a new human cell line (SiHa) derived from carcinoma of uterus. I. Its establishment and morphology. Proc Soc Exp Biol Med 1970; 135: 5435.
  • 30
    Steenbergen RD, Kramer D, Braakhuis BJ, Stern PL, Verheijen RH, Meijer CJ, Snijders PJ. TSLC1 gene silencing in cervical cancer cell lines and cervical neoplasia. J Natl Cancer Inst 2004; 96: 294305.
  • 31
    Harrison R, Rae I. General techniques of cell culture. Cambridge: Cambridge University Press, 1997.
  • 32
    Sangwa-Lugoma G, Mahmud S, Nasr SH, Liaras J, Kayembe PK, Tozin RR, Drouin P, Lorincz A, Ferenczy A, Franco EL. Visual inspection as a cervical cancer screening method in a primary health care setting in Africa. Int J Cancer 2006; 119: 138995.
  • 33
    De Vuyst H, Claeys P, Njiru S, Muchiri L, Steyaert S, De Sutter P, Van Marck E, Bwayo J, Temmerman M. Comparison of pap smear, visual inspection with acetic acid, human papillomavirus DNA-PCR testing and cervicography. Int J Gynaecol Obstet 2005; 89: 1206.
  • 34
    Chatfield C, Collins AJ. Introduction to multivariate analysis. London: Chapman & Hall, 1980.
  • 35
    Agrawal A, Utzinger U, Brookner C, Pitris C, Mitchell MF, Richards-Kortum R. Fluorescence spectroscopy of the cervix: influence of acetic acid, cervical mucus, and vaginal medications. Lasers Surg Med 1999; 25: 23749.