• 1
    Massague J,Blain SW,Lo RS. TGF-β signaling in growth control, cancer, and heritable disorders. Cell 2000; 103: 295309.
  • 2
    Todaro GJ,De Larco JE. Growth factors produced by sarcoma virus-transformed cells. Cancer Res 1978; 38: 414754.
  • 3
    Siegel PM,Massague J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer 2003; 3: 80721.
  • 4
    Annes JP,Munger JS,Rifkin DB. Making sense of latent TGF-β activation. J Cell Sci 2003; 116: 21724.
  • 5
    de Caestecker M. The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev 2004; 15: 111.
  • 6
    Fonsatti E,Del Vecchio L,Altomonte M,Sigalotti L,Nicotra MR,Coral S,Natali PG,Maio M. Endoglin: an accessory component of the TGF-β-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. J Cell Physiol 2001; 188: 17.
  • 7
    Samad TA,Rebbapragada A,Bell E,Zhang Y,Sidis Y,Jeong SJ,Campagna JA,Perusini S,Fabrizio DA,Schneyer AL,Lin HY,Brivanlou AH, et al. DRAGON, a bone morphogenetic protein co-receptor. J Biol Chem 2005; 280: 141229.
  • 8
    Babitt JL,Zhang Y,Samad TA,Xia Y,Tang J,Campagna JA,Schneyer AL,Woolf CJ,Lin HY. Repulsive guidance molecule (RGMa), a DRAGON homologue, is a bone morphogenetic protein co-receptor. J Biol Chem 2005; 280: 298207.
  • 9
    Feng XH,Derynck R. Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 2005; 21: 65993.
  • 10
    Shi Y,Massague J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 2003; 113: 685700.
  • 11
    Attisano L,Tuen Lee-Hoeflich S. The Smads. Genome Biol 2001; 2:REVIEWS3010.
  • 12
    Weinstein M,Yang X,Deng C. Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. Cytokine Growth Factor Rev 2000; 11: 4958.
  • 13
    Kretzschmar M,Doody J,Massague J. Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1. Nature 1997; 389: 61822.
  • 14
    Hayashida T,Decaestecker M,Schnaper HW. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-β-dependent responses in human mesangial cells. FASEB J 2003; 17: 15768.
  • 15
    Wang G,Long J,Matsuura I,He D,Liu F. The Smad3 linker region contains a transcriptional activation domain. Biochem J 2005; 386: 2934.
  • 16
    Liu F,Hata A,Baker JC,Doody J,Carcamo J,Harland RM,Massague J. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 1996; 381: 6203.
  • 17
    Massague J,Seoane J,Wotton D. Smad transcription factors. Genes Dev 2005; 19: 2783810.
  • 18
    Qin BY,Chacko BM,Lam SS,de Caestecker MP,Correia JJ,Lin K. Structural basis of Smad1 activation by receptor kinase phosphorylation. Mol Cell 2001; 8: 130312.
  • 19
    Tsukazaki T,Chiang TA,Davison AF,Attisano L,Wrana JL. SARA, a FYVE domain protein that recruits Smad2 to the TGF-β receptor. Cell 1998; 95: 77991.
  • 20
    Itoh S,Landström M,Hermansson A,Itoh F,Heldin CH,Heldin NE,ten Dijke P. Transforming growth factor-β1 induces nuclear export of inhibitory Smad7. J Biol Chem 1998; 273: 29195201.
  • 21
    Ebisawa T,Fukuchi M,Murakami G,Chiba T,Tanaka K,Imamura T,Miyazono K. Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J Biol Chem 2001; 276: 1247780.
  • 22
    Shi W,Sun C,He B,Xiong W,Shi X,Yao D,Cao X. GADD34-PP1c recruited by Smad7 dephosphorylates TGF-βtype I receptor. J Cell Biol 2004; 164: 291300.
  • 23
    Hata A,Lagna G,Massague J,Hemmati-Brivanlou A. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 1998; 12: 18697.
  • 24
    Bai S,Cao X. A nuclear antagonistic mechanism of inhibitory Smads in transforming growth factor-β signaling. J Biol Chem 2002; 277: 417682.
  • 25
    Javelaud D,Mauviel A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-β: implications for carcinogenesis. Oncogene 2005; 24: 574250.
  • 26
    Brown JD,DiChiara MR,Anderson KR,Gimbrone MA,Jr,Topper JN. MEKK-1, a component of the stress (stress-activated protein kinase/c-Jun N-terminal kinase) pathway, can selectively activate Smad2-mediated transcriptional activation in endothelial cells. J Biol Chem 1999; 274: 8797805.
  • 27
    Engel ME,McDonnell MA,Law BK,Moses HL. Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. J Biol Chem 1999; 274: 3741320.
  • 28
    Funaba M,Zimmerman CM,Mathews LS. Modulation of Smad2-mediated signaling by extracellular signal-regulated kinase. J Biol Chem 2002; 277: 413618.
  • 29
    Matsuura I,Wang G,He D,Liu F. Identification and characterization of ERK MAP kinase phosphorylation sites in Smad3. Biochemistry 2005; 44: 1254653.
  • 30
    Hayes SA,Huang X,Kambhampati S,Platanias LC,Bergan RC. p38 MAP kinase modulates Smad-dependent changes in human prostate cell adhesion. Oncogene 2003; 22: 484150.
  • 31
    Kamaraju AK,Roberts AB. Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-β-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo. J Biol Chem 2005; 280: 102436.
  • 32
    Leivonen S-K,Chantry A,Häkkinen L,Han J,Kähäri V-M. Smad3 mediates transforming growth factor-β-induced collagenase-3 (matrix metalloproteinase-13) expression in human gingival fibroblasts. Evidence for cross-talk between Smad3 and p38 signaling pathways. J Biol Chem 2002; 277: 4633846.
  • 33
    Leivonen S-K,Häkkinen L,Liu D,Kähäri V-M. Smad3 and extracellular signal-regulated kinase 1/2 coordinately mediate transforming growth factor-β-induced expression of connective tissue growth factor in human fibroblasts. J Invest Dermatol 2005; 124: 11629.
  • 34
    Kretzschmar M,Doody J,Timokhina I,Massague J. A mechanism of repression of TGF-β/Smad signaling by oncogenic Ras. Genes Dev 1999; 13: 80416.
  • 35
    Leivonen S-K,Ala-aho R,Koli K,Grénman R,Peltonen J,Kähäri V-M. Activation of Smad signaling enhances collagenase-3 (MMP-13) expression and invasion of head and neck squamous carcinoma cells. Oncogene 2006; 25: 2588600.
  • 36
    Yamaguchi K,Shirakabe K,Shibuya H,Irie K,Oishi I,Ueno N,Taniguchi T,Nishida E,Matsumoto K. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 1995; 270: 200811.
  • 37
    Sano Y,Harada J,Tashiro S,Gotoh-Mandeville R,Maekawa T,Ishii S. ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-β signaling. J Biol Chem 1999; 274: 894957.
  • 38
    Hanafusa H,Ninomiya-Tsuji J,Masuyama N,Nishita M,Fujisawa J,Shibuya H,Matsumoto K,Nishida E. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression. J Biol Chem 1999; 274: 271617.
  • 39
    Takekawa M,Tatebayashi K,Itoh F,Adachi M,Imai K,Saito H. Smad-dependent GADD45β expression mediates delayed activation of p38 MAP kinase by TGF-β. EMBO J 2002; 21: 647382.
  • 40
    Ungefroren H,Lenschow W,Chen WB,Fändrich F,Kalthoff H. Regulation of biglycan gene expression by transforming growth factor-β requires MKK6-p38 mitogen-activated protein kinase signaling downstream of Smad signaling. J Biol Chem 2003; 278: 110419.
  • 41
    Ungefroren H,Groth S,Ruhnke M,Kalthoff H,Fändrich F. Transforming growth factor-β (TGF-β) type I receptor/ALK5-dependent activation of the GADD45β gene mediates the induction of biglycan expression by TGF-β. J Biol Chem 2005; 280: 264452.
  • 42
    Kimura N,Matsuo R,Shibuya H,Nakashima K,Taga T. BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6. J Biol Chem 2000; 275: 1764752.
  • 43
    Simeone DM,Zhang L,Graziano K,Nicke B,Pham T,Schaefer C,Logsdon CD. Smad4 mediates activation of mitogen-activated protein kinases by TGF-β in pancreatic acinar cells. Am J Physiol Cell Physiol 2001; 281: C311C319.
  • 44
    Edlund S,Bu S,Schuster N,Aspenström P,Heuchel R,Heldin NE,ten Dijke P,Heldin CH,Landström M. Transforming growth factor-β1 (TGF-β)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-β-activated kinase 1 and mitogen-activated protein kinase kinase 3. Mol Biol Cell 2003; 14: 52944.
  • 45
    Mazars A,Lallemand F,Prunier C,Marais J,Ferrand N,Pessah M,Cherqui G,Atfi A. Evidence for a role of the JNK cascade in Smad7-mediated apoptosis. J Biol Chem 2001; 276: 36797803.
  • 46
    Wakefield LM,Roberts AB. TGF-β signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002; 12: 229.
  • 47
    Akhurst RJ,Derynck R. TGF-β signaling in cancer—a double-edged sword. Trends Cell Biol 2001; 11: S44S51.
  • 48
    Hanahan D,Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 5770.
  • 49
    Derynck R,Akhurst RJ,Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat Genet 2001; 29: 11729.
  • 50
    Seoane J,Le HV,Shen L,Anderson SA,Massague J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004; 117: 21123.
  • 51
    Gomis RR,Alarcon C,Nadal C,Van Poznak C,Massague J. C/EBPβ at the core of the TGF-β cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 2006; 10: 20314.
  • 52
    Cordenonsi M,Dupont S,Maretto S,Insinga A,Imbriano C,Piccolo S. Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with Smads. Cell 2003; 113: 30114.
  • 53
    Frederick JP,Liberati NT,Waddell DS,Shi Y,Wang XF. Transforming growth factor β-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol Cell Biol 2004; 24: 254659.
  • 54
    Claassen GF,Hann SR. A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor-β -induced cell-cycle arrest. Proc Natl Acad Sci USA 2000; 97: 9498503.
  • 55
    Warner BJ,Blain SW,Seoane J,Massague J. Myc downregulation by transforming growth factor-β required for activation of the p15(Ink4b) G1 arrest pathway. Mol Cell Biol 1999; 19: 591322.
  • 56
    Levy L,Hill CS. Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 2006; 17: 4158.
  • 57
    Pardali K,Moustakas A. Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 2007; 1775: 2162.
  • 58
    Cohen MM,Jr. TGF- β/Smad signaling system and its pathologic correlates. Am J Med Genet A 2003; 116: 110.
  • 59
    Dumont N,Arteaga CL. The tumor microenvironment: a potential arbitrator of the tumor suppressive and promoting actions of TGF-β. Differentiation 2002; 70: 57482.
  • 60
    Johansson N,Ala-aho R,Uitto V,Grénman R,Fusenig NE,Lopez-Otin C,Kähäri V-M. Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase. J Cell Sci 2000; 113: 22735.
  • 61
    Janji B,Melchior C,Gouon V,Vallar L,Kieffer N. Autocrine TGF-β-regulated expression of adhesion receptors and integrin-linked kinase in HT-144 melanoma cells correlates with their metastatic phenotype. Int J Cancer 1999; 83: 25562.
  • 62
    Lin SW,Lee MT,Ke FC,Lee PP,Huang CJ,Ip MM,Chen L,Hwang JJ. TGF-β1 stimulates the secretion of matrix metalloproteinase 2 (MMP2) and the invasive behavior in human ovarian cancer cells, which is suppressed by MMP inhibitor BB3103. Clin Exp Metastasis 2000; 18: 4939.
  • 63
    Ala-aho R,Ahonen M,George SJ,Heikkilä J,Grénman R,Kallajoki M,Kähäri V-M. Targeted inhibition of human collagenase-3 (MMP-13) expression inhibits squamous cell carcinoma growth in vivo. Oncogene 2004; 23: 511123.
  • 64
    Toriseva MJ,Ala-aho R,Karvinen J,Baker AH,Marjomäki VS,Heino J,Kähäri V-M. Collagenase-3 (MMP-13) enhances remodeling of three-dimensional collagen and promotes survival of human skin fibroblasts. J Invest Dermatol 2007; 127: 4959.
  • 65
    Junttila MR,Ala-aho R,Jokilehto T,Peltonen J,Kallajoki M,Grénman R,Jaakkola P,Westermarck J,Kähäri V-M. p38α and p38δ mitogen-activated protein kinase isoforms regulate invasion and growth of head and neck squamous carcinoma cells. Oncogene 2007; 26: 526779.
  • 66
    Yin JJ,Selander K,Chirgwin JM,Dallas M,Grubbs BG,Wieser R,Massague J,Mundy GR,Guise TA. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 1999; 103: 197206.
  • 67
    Kang Y,Siegel PM,Shu W,Drobnjak M,Käkönen SM,Cordon-Cardo C,Guise TA,Massague J. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3: 53749.
  • 68
    Deckers M,van Dinther M,Buijs J,Que I,Löwik C,van der Pluijm G,Ten Dijke P. The tumor suppressor Smad4 is required for transforming growth factor -β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 2006; 66: 22029.
  • 69
    Kang Y,He W,Tulley S,Gupta GP,Serganova I,Chen CR,Manova-Todorova K,Blasberg R,Gerald WL,Massague J. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 2005; 102: 1390914.
  • 70
    Azuma H,Ehata S,Miyazaki H,Watabe T,Maruyama O,Imamura T,Sakamoto T,Kiyama S,Kiyama Y,Ubai T,Inamoto T,Takahara S, et al. Effect of Smad7 expression on metastasis of mouse mammary carcinoma JygMC(A) cells. J Natl Cancer Inst 2005; 97: 173446.
  • 71
    Tian F,DaCosta Byfield S,Parks WT,Yoo S,Felici A,Tang B,Piek E,Wakefield LM,Roberts AB. Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 2003; 63: 828492.
  • 72
    Tian F,Byfield SD,Parks WT,Stuelten CH,Nemani D,Zhang YE,Roberts AB. Smad-binding defective mutant of transforming growth factor-β type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 2004; 64: 452330.
  • 73
    Li AG,Lu SL,Zhang MX,Deng C,Wang XJ. Smad3 knockout mice exhibit a resistance to skin chemical carcinogenesis. Cancer Res 2004; 64: 783645.
  • 74
    Javelaud D,Delmas V,Moller M,Sextius P,Andre J,Menashi S,Larue L,Mauviel A. Stable overexpression of Smad7 in human melanoma cells inhibits their tumorigenicity in vitro and in vivo. Oncogene 2005; 24: 76249.
  • 75
    Javelaud D,Mohammad KS,McKenna CR,Fournier P,Luciani F,Niewolna M,Andre J,Delmas V,Larue L,Guise TA,Mauviel A. Stable overexpression of Smad7 in human melanoma cells impairs bone metastasis. Cancer Res 2007; 67: 231724.
  • 76
    Bardeesy N,Cheng KH,Berger JH,Chu GC,Pahler J,Olson P,Hezel AF,Horner J,Lauwers GY,Hanahan D,DePinho RA. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 2006; 20: 313046.
  • 77
    Yingling JM,Blanchard KL,Sawyer JS. Development of TGF-β signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004; 3: 101122.
  • 78
    Akhurst RJ. Large- and small-molecule inhibitors of transforming growth factor-β signaling. Curr Opin Investig Drugs 2006; 7: 51321.
  • 79
    Schlingensiepen KH,Schlingensiepen R,Steinbrecher A,Hau P,Bogdahn U,Fischer-Blass B,Jachimczak P. Targeted tumor therapy with the TGF-β2 antisense compound AP12009. Cytokine Growth Factor Rev 2006; 17: 12939.
  • 80
    DaCosta Byfield S,Major C,Laping NJ,Roberts AB. SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2004; 65: 74452.
  • 81
    Inman GJ,Nicolas FJ,Callahan JF,Harling JD,Gaster LM,Reith AD,Laping NJ,Hill CS. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2002; 62: 6574.
  • 82
    Peng SB,Yan L,Xia X,Watkins SA,Brooks HB,Beight D,Herron DK,Jones ML,Lampe JW,McMillen WT,Mort N,Sawyer JS, et al. Kinetic characterization of novel pyrazole TGF-β receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition. Biochemistry 2005; 44: 2293304.
  • 83
    Uhl M,Aulwurm S,Wischhusen J,Weiler M,Ma JY,Almirez R,Mangadu R,Liu YW,Platten M,Herrlinger U,Murphy A,Wong DH, et al. SD-208, a novel transforming growth factor-β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 2004; 64: 795461.
  • 84
    Ge R,Rajeev V,Ray P,Lattime E,Rittling S,Medicherla S,Protter A,Murphy A,Chakravarty J,Dugar S,Schreiner G,Barnard N, et al. Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-β type I receptor kinase in vivo. Clin Cancer Res 2006; 12: 431530.
  • 85
    Ehata S,Hanyu A,Fujime M,Katsuno Y,Fukunaga E,Goto K,Ishikawa Y,Nomura K,Yokoo H,Shimizu T,Ogata E,Miyazono K, et al. Ki26894, a novel transforming growth factor-β type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci 2007; 98: 12733.
  • 86
    Bandyopadhyay A,Agyin JK,Wang L,Tang Y,Lei X,Story BM,Cornell JE,Pollock BH,Mundy GR,Sun LZ. Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-β type I receptor kinase inhibitor. Cancer Res 2006; 66: 671421.
  • 87
    Schmidt-Weber CB,Blaser K. Regulation and role of transforming growth factor-β in immune tolerance induction and inflammation. Curr Opin Immunol 2004; 16: 70916.