• 1
    Carding SR,Egan PJ. γδ T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2002; 2: 33645.
  • 2
    Chen ZW,Letvin NL. Adaptive immune response of Vγ2Vδ2 T cells: a new paradigm. Trends Immunol 2003; 24: 21319.
  • 3
    Sato K,Kimura S,Segawa H,Yokota A,Matsumoto S,Kuroda J,Nogawa M,Yuasa T,Kiyono Y,Wada H,Maekawa T. Cytotoxic effects of γδ T cells expanded ex vivo by a third generation bisphosphonate for cancer immunotherapy. Int J Cancer 2005; 116: 949.
  • 4
    Kato Y,Tanaka Y,Miyagawa F,Yamashita S,Minato N. Targeting of tumor cells for human γδ T cells by nonpeptide antigens. J Immunol 2001; 167: 50928.
  • 5
    Corvaisier M,Moreau-Aubry A,Diez E,Bennouna J,Mosnier JF,Scotet E,Bonneville M,Jotereau F. Vγ9Vδ2 T cell response to colon carcinoma cells. J Immunol 2005; 175: 54818.
  • 6
    Kabelitz D,Wesch D,Pitters E,Zoller M. Characterization of tumor reactivity of human Vγ9Vδ2γδ T cells in vitro and in SCID mice in vivo. J Immunol 2004; 173: 676776.
  • 7
    Kabelitz D,Wesch D,Pitters E,Zoller M. Potential of human γδ T lymphocytes for immunotherapy of cancer. Int J Cancer 2004; 112: 72732.
  • 8
    Wilhelm M,Kunzmann V,Eckstein S,Reimer P,Weissinger F,Ruediger T,Tony HP. γδ T cells for immune therapy of patients with lymphoid malignancies. Blood 2003; 102: 2006.
  • 9
    Viey E,Fromont G,Escudier B,Morel Y,Da Rocha S,Chouaib S,Caignard A. Phosphostim-activated γδ T cells kill autologous metastatic renal cell carcinoma. J Immunol 2005; 174: 133847.
  • 10
    Kunzmann V,Wilhelm M. Anti-lymphoma effect of γδ T cells. Leuk Lymphoma 2005; 46: 67180.
  • 11
    Kunzmann V,Bauer E,Feurle J,Weissinger F,Tony HP,Wilhelm M. Stimulation of γδ T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000; 96: 38492.
  • 12
    Rincon-Orozco B,Kunzmann V,Wrobel P,Kabelitz D,Steinle A,Herrmann T. Activation of Vγ9Vδ2 T cells by NKG2D. J Immunol 2005; 175: 214451.
  • 13
    Lafont V,Liautard J,Liautard JP,Favero J. Production of TNF-α by human Vγ9Vδ2 T cells via engagement of Fc γ RIIIA, the low affinity type 3 receptor for the Fc portion of IgG, expressed upon TCR activation by nonpeptidic antigen. J Immunol 2001; 166: 71909.
  • 14
    Bukowski JF,Morita CT,Tanaka Y,Bloom BR,Brenner MB,Band H. Vγ2Vδ2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J Immunol 1995; 154: 9981006.
  • 15
    Angelini DF,Borsellino G,Poupot M,Diamantini A,Poupot R,Bernardi G,Poccia F,Fournie JJ,Battistini L. Fcgamma R, III. Discriminates between 2 subsets of Vγ9Vδ2 effector cells with different responses and activation pathways. Blood 2004; 104: 18017.
  • 16
    Cooper MA,Fehniger TA,Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol 2001; 22: 63340.
  • 17
    Lanier LL,Kipps TJ,Phillips JH. Functional properties of a unique subset of cytotoxic CD3+ T lymphocytes that express Fc receptors for IgG (CD16/Leu-11 antigen). J Exp Med 1985; 162: 2089106.
  • 18
    Braakman E,van de Winkel JG,van Krimpen BA,Jansze M,Bolhuis RL. CD16 on human γδ T lymphocytes: expression, function, and specificity for mouse IgG isotypes. Cell Immunol 1992; 143: 97107.
  • 19
    Marcus R,Imrie K,Belch A,Cunningham D,Flores E,Catalano J,Solal-Celigny P,Offner F,Walewski J,Raposo J,Jack A,Smith P. CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood 2005; 105: 141723.
  • 20
    Hainsworth JD,Litchy S,Burris HA,III,Scullin DC,Jr,Corso SW,Yardley DA,Morrissey L,Greco FA. Rituximab as first-line and maintenance therapy for patients with indolent non-hodgkin's lymphoma. J Clin Oncol 2002; 20: 42617.
  • 21
    Czuczman MS,Weaver R,Alkuzweny B,Berlfein J,Grillo-Lopez AJ. Prolonged clinical and molecular remission in patients with low-grade or follicular non-Hodgkin's lymphoma treated with rituximab plus CHOP chemotherapy: 9-year follow-up. J Clin Oncol 2004; 22: 471116.
  • 22
    Smith I,Procter M,Gelber RD,Guillaume S,Feyereislova A,Dowsett M,Goldhirsch A,Untch M,Mariani G,Baselga J,Kaufmann M,Cameron D, et al. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet 2007; 369: 2936.
  • 23
    Reff ME,Carner K,Chambers KS,Chinn PC,Leonard JE,Raab R,Newman RA,Hanna N,Anderson DR. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 1994; 83: 43545.
  • 24
    Olszewski AJ,Grossbard ML. Empowering targeted therapy: lessons from rituximab. Sci STKE 2004; 241: pe30.
  • 25
    Clynes RA,Towers TL,Presta LG,Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 2000; 6: 4436.
  • 26
    Gennari R,Menard S,Fagnoni F,Ponchio L,Scelsi M,Tagliabue E,Castiglioni F,Villani L,Magalotti C,Gibelli N,Oliviero B,Ballardini B, et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 2004; 10: 56505.
  • 27
    Tokuda Y,Ohnishi Y,Shimamura K,Iwasawa M,Yoshimura M,Ueyama Y,Tamaoki N,Tajima T,Mitomi T. In vitro and in vivo anti-tumour effects of a humanised monoclonal antibody against c-erbB-2 product. Br J Cancer 1996; 73: 13625.
  • 28
    Berinstein NL,Grillo-Lopez AJ,White CA,Bence-Bruckler I,Maloney D,Czuczman M,Green D,Rosenberg J,McLaughlin P,Shen D. Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin's lymphoma. Ann Oncol 1998; 9: 9951001.
  • 29
    Tobinai K,Kobayashi Y,Narabayashi M,Ogura M,Kagami Y,Morishima Y,Ohtsu T,Igarashi T,Sasaki Y,Kinoshita T,Murate T. Feasibility and pharmacokinetic study of a chimeric anti-CD20 monoclonal antibody (IDEC-C2B8, rituximab) in relapsed B-cell lymphoma. The IDEC-C2B8 Study Group. Ann Oncol 1998; 9: 52734.
  • 30
    Tokuda Y,Watanabe T,Omuro Y,Ando M,Katsumata N,Okumura A,Ohta M,Fujii H,Sasaki Y,Niwa T,Tajima T. Dose escalation and pharmacokinetic study of a humanized anti-HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. Br J Cancer 1999; 81: 141925.
  • 31
    Baselga J,Carbonell X,Castaneda-Soto NJ,Clemens M,Green M,Harvey V,Morales S,Barton C,Ghahramani P. Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J Clin Oncol 2005; 23: 216271.
  • 32
    Derby E,Reddy V,Kopp W,Nelson E,Baseler M,Sayers T,Malyguine A. Three-color flow cytometric assay for the study of the mechanisms of cell-mediated cytotoxicity. Immunol Lett 2001; 78: 359.
  • 33
    Mattarollo SR,Kenna T,Nieda M,Nicol AJ. Chemotherapy and zoledronate sensitize solid tumour cells to Vγ9Vδ2 T cell cytotoxicity. Cancer Immunol Immunother 2007; 56: 128597.
  • 34
    Herault O,Colombat P,Domenech J,Degenne M,Bremond JL,Sensebe L,Bernard MC,Binet C. A rapid single-laser flow cytometric method for discrimination of early apoptotic cells in a heterogenous cell population. Br J Haematol 1999; 104: 5307.
  • 35
    Mattarollo SR,Kenna T,Nieda M,Nicol AJ. Chemotherapy pretreatment sensitizes solid tumor-derived cell lines to V alpha 24+ NKT cell-mediated cytotoxicity. Int J Cancer 2006; 119: 16307.
  • 36
    Heo DS,Park JG,Hata K,Day R,Herberman RB,Whiteside TL. Evaluation of tetrazolium-based semiautomatic colorimetric assay for measurement of human antitumor cytotoxicity. Cancer Res 1990; 50: 368190.
  • 37
    Hussain RF,Nouri AM,Oliver RT. A new approach for measurement of cytotoxicity using colorimetric assay. J Immunol Methods 1993; 160: 8996.
  • 38
    Kayagaki N,Yamaguchi N,Nakayama M,Kawasaki A,Akiba H,Okumura K,Yagita H. Involvement of TNF-related apoptosis-inducing ligand in human CD4+ T cell-mediated cytotoxicity. J Immunol 1999; 162: 263947.
  • 39
    Liu Z,Guo BL,Gehrs BC,Nan L,Lopez RD. Ex vivo expanded human Vγ9Vδ2+ γδ-T cells mediate innate antitumor activity against human prostate cancer cells in vitro. J Urol 2005; 173: 15526.
  • 40
    Waldmann TA. Effective cancer therapy through immunomodulation. Annu Rev Med 2006; 57: 6581.
  • 41
    Caccamo N,Meraviglia S,Ferlazzo V,Angelini D,Borsellino G,Poccia F,Battistini L,Dieli F,Salerno A. Differential requirements for antigen or homeostatic cytokines for proliferation and differentiation of human Vγ9Vδ2 naive, memory and effector T cell subsets. Eur J Immunol 2005; 35: 176472.
  • 42
    Fleming GF,Meropol NJ,Rosner GL,Hollis DR,Carson WE,III,Caligiuri M,Mortimer J,Tkaczuk K,Parihar R,Schilsky RL,Ratain MJ. A phase I trial of escalating doses of trastuzumab combined with daily subcutaneous interleukin 2: report of cancer and leukemia group B 9661. Clin Cancer Res 2002; 8: 371827.
  • 43
    Repka T,Chiorean EG,Gay J,Herwig KE,Kohl VK,Yee D,Miller JS. Trastuzumab and interleukin-2 in HER2-positive metastatic breast cancer: a pilot study. Clin Cancer Res 2003; 9: 24406.
  • 44
    Meropol NJ,Porter M,Blumenson LE,Lindemann MJ,Perez RP,Vaickus L,Loewen GM,Creaven PJ,Wilkes KA,Giedlin MA,Caligiuri MA. Daily subcutaneous injection of low-dose interleukin 2 expands natural killer cells in vivo without significant toxicity. Clin Cancer Res 1996; 2: 66977.
  • 45
    Clemenceau B,Gallot G,Vivien R,Gaschet J,Campone M,Vie H. Long-term preservation of antibody-dependent cellular cytotoxicity (ADCC) of natural killer cells amplified in vitro from the peripheral blood of breast cancer patients after chemotherapy. J Immunother 2006; 29: 5360.
  • 46
    Carson WE,Parihar R,Lindemann MJ,Personeni N,Dierksheide J,Meropol NJ,Baselga J,Caligiuri MA. Interleukin-2 enhances the natural killer cell response to Herceptin-coated Her2/neu-positive breast cancer cells. Eur J Immunol 2001; 31: 301625.
  • 47
    Caligiuri MA,Murray C,Robertson MJ,Wang E,Cochran K,Cameron C,Schow P,Ross ME,Klumpp TR,Soiffer RJ,Smith KA,Ritz J, et al. Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2. J Clin Invest 1993; 91: 12332.
  • 48
    Meropol NJ,Barresi GM,Fehniger TA,Hitt J,Franklin M,Caligiuri MA. Evaluation of natural killer cell expansion and activation in vivo with daily subcutaneous low-dose interleukin-2 plus periodic intermediate-dose pulsing. Cancer Immunol Immunother 1998; 46: 31826.
  • 49
    Fisch P,Meuer E,Pende D,Rothenfusser S,Viale O,Kock S,Ferrone S,Fradelizi D,Klein G,Moretta L,Rammensee HG,Boon T, et al. Control of B cell lymphoma recognition via natural killer inhibitory receptors implies a role for human Vγ9/Vδ2 T cells in tumor immunity. Eur J Immunol 1997; 27: 336879.
  • 50
    Sicard H,Al Saati T,Delsol G,Fournie JJ. Synthetic phosphoantigens enhance human Vγ9Vδ2 T lymphocytes killing of non-Hodgkin's B lymphoma. Mol Med 2001; 7: 71122.
  • 51
    Choudhary A,Davodeau F,Moreau A,Peyrat MA,Bonneville M,Jotereau F. Selective lysis of autologous tumor cells by recurrent γδ tumor-infiltrating lymphocytes from renal carcinoma. J Immunol 1995; 154: 393240.
  • 52
    Roda JM,Parihar R,Magro C,Nuovo GJ,Tridandapani S,Carson WE,III. Natural killer cells produce T cell-recruiting chemokines in response to antibody-coated tumor cells. Cancer Res 2006; 66: 51726.
  • 53
    Brandes M,Willimann K,Moser B. Professional antigen-presentation function by human γδ T Cells. Science 2005; 309: 2648.
  • 54
    Moser B,Brandes M. γδ T cells: an alternative type of professional APC. Trends Immunol 2006; 27: 11218.
  • 55
    Cesana GC,DeRaffele G,Cohen S,Moroziewicz D,Mitcham J,Stoutenburg J,Cheung K,Hesdorffer C,Kim-Schulze S,Kaufman HL. Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol 2006; 24: 116977.
  • 56
    Kabelitz D,Wesch D,He W. Perspectives of γδ T cells in tumor immunology. Cancer Res 2007; 67: 58.