• 1
    Dickstein JI,Vardiman JW. Issues in the pathology and diagnosis of the chronic myeloproliferative disorders and the myelodysplastic syndromes. Am J Clin Pathol 1993; 99: 51325.
  • 2
    Spivak JL. Polycythemia vera: myths, mechanisms, and management. Blood 2002; 100: 427290.
  • 3
    Baxter EJ,Scott LM,Campbell PJ,East C,Fourouclas N,Swanton S,Vassiliou GS,Bench AJ,Boyd EM,Curtin N,Scott MA,Erber WN, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 105461.
  • 4
    Levine RL,Wadleigh M,Cools J,Ebert BL,Wernig G,Huntly BJ,Boggon TJ,Wlodarska I,Clark JJ,Moore S,Adelsperger J,Koo S, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 38797.
  • 5
    James C,Ugo V,Le Couedic JP,Staerk J,Delhommeau F,Lacout C,Garcon L,Raslova H,Berger R,Bennaceur-Griscelli A,Villeval JL,Constantinescu SN, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 11448.
  • 6
    Kralovics R,Passamonti F,Buser AS,Teo SS,Tiedt R,Passweg JR,Tichelli A,Cazzola M,Skoda RC. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 177990.
  • 7
    Zhao R,Xing S,Li Z,Fu X,Li Q,Krantz SB,Zhao ZJ. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005; 280: 2278892.
  • 8
    Kralovics R,Teo SS,Li S,Theocharides A,Buser AS,Tichelli A,Skoda RC. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 2006; 108: 137780.
  • 9
    Nussenzveig RH,Swierczek SI,Jelinek J,Gaikwad A,Liu E,Verstovsek S,Prchal JF,Prchal JT. Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol 2007; 35: 328.
  • 10
    Dip R,Naegeli H. More than just strand breaks: the recognition of structural DNA discontinuities by DNA-dependent protein kinase catalytic subunit. Faseb J 2005; 19: 70415.
  • 11
    Gullo C,Au M,Feng G,Teoh G. The biology of Ku and its potential oncogenic role in cancer. Biochim Biophys Acta 2006; 1765: 22334.
  • 12
    Downs JA,Jackson SP. A means to a DNA end: the many roles of Ku. Nat Rev Mol Cell Biol 2004; 5: 36778.
  • 13
    Brady N,Gaymes TJ,Cheung M,Mufti GJ,Rassool FV. Increased error-prone NHEJ activity in myeloid leukemias is associated with DNA damage at sites that recruit key nonhomologous end-joining proteins. Cancer Res 2003; 63: 1798805.
  • 14
    Gaymes TJ,Mufti GJ,Rassool FV. Myeloid leukemias have increased activity of the nonhomologous end-joining pathway and concomitant DNA misrepair that is dependent on the Ku70/86 heterodimer. Cancer Res 2002; 62: 27917.
  • 15
    Collis SJ,DeWeese TL,Jeggo PA,Parker AR. The life and death of DNA-PK. Oncogene 2005; 24: 94961.
  • 16
    Jaffe ES,Harris NL,Stein H,Vardiman JWE. World Health Organization classification of tumours: pathology and genetics of tumours of haematopoietic and lymphoid tissuesed. Lyon: IARC, 2001.
  • 17
    Tefferi A,Thiele J,Orazi A,Kvasnicka HM,Barbui T,Hanson CA,Barosi G,Verstovsek S,Birgegard G,Mesa R,Reilly JT,Gisslinger H, et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood 2007; 110: 10927.
  • 18
    Tefferi A,Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22: 1422.
  • 19
    Thirone AC,JeBailey L,Bilan PJ,Klip A. Opposite effect of JAK2 on insulin-dependent activation of mitogen-activated protein kinases and Akt in muscle cells: possible target to ameliorate insulin resistance. Diabetes 2006; 55: 94251.
  • 20
    Aaronson DS,Horvath CM. A road map for those who know JAK-STAT. Science 2002; 296: 16535.
  • 21
    Rawlings JS,Rosler KM,Harrison DA. The JAK/STAT signaling pathway. J Cell Sci 2004; 117: 12813.
  • 22
    Shi S,Calhoun HC,Xia F,Li J,Le L,Li WX. JAK signaling globally counteracts heterochromatic gene silencing. Nat Genet 2006; 38: 10716.
  • 23
    Levine RL,Loriaux M,Huntly BJ,Loh ML,Beran M,Stoffregen E,Berger R,Clark JJ,Willis SG,Nguyen KT,Flores NJ,Estey E, et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood 2005; 106: 33779.
  • 24
    Steensma DP,Dewald GW,Lasho TL,Powell HL,McClure RF,Levine RL,Gilliland DG,Tefferi A. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood 2005; 106: 12079.
  • 25
    Steensma DP,McClure RF,Karp JE,Tefferi A,Lasho TL,Powell HL,DeWald GW,Kaufmann SH. JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia 2006; 20: 9718.
  • 26
    Xu X,Zhang Q,Luo J,Xing S,Li Q,Krantz SB,Fu X,Zhao ZJ. JAK2V617F: Prevalence in a large Chinese hospital population. Blood 2007; 109: 33942.
  • 27
    Steidl U,Kronenwett R,Haas R. Differential gene expression underlying the functional distinctions of primary human CD34+ hematopoietic stem and progenitor cells from peripheral blood and bone marrow. Ann N Y Acad Sci 2003; 996: 89100.
  • 28
    Steidl U,Kronenwett R,Rohr UP,Fenk R,Kliszewski S,Maercker C,Neubert P,Aivado M,Koch J,Modlich O,Bojar H,Gattermann N, et al. Gene expression profiling identifies significant differences between the molecular phenotypes of bone marrow-derived and circulating human CD34+ hematopoietic stem cells. Blood 2002; 99: 203744.
  • 29
    Enslen H,Raingeaud J,Davis RJ. Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem 1998; 273: 17418.
  • 30
    Obata T,Brown GE,Yaffe MB MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit Care Med 2000; 28: N6777.
  • 31
    Xu X,Fu XY,Plate J,Chong AS. IFN-gamma induces cell growth inhibition by Fas-mediated apoptosis: requirement of STAT1 protein for up-regulation of Fas and FasL expression. Cancer Res 1998; 58: 28327.
  • 32
    Chaouchi N,Wallon C,Goujard C,Tertian G,Rudent A,Caput D,Ferrera P,Minty A,Vazquez A,Delfraissy JF. Interleukin-13 inhibits interleukin-2-induced proliferation and protects chronic lymphocytic leukemia B cells from in vitro apoptosis. Blood 1996; 87: 10229.
  • 33
    Zaninoni A,Imperiali FG,Pasquini C,Zanella A,Barcellini W. Cytokine modulation of nuclear factor-kappaB activity in B-chronic lymphocytic leukemia. Exp Hematol 2003; 31: 18590.
  • 34
    Wynn TA. IL-13 effector functions. Annu Rev Immunol 2003; 21: 42556.
  • 35
    Lin Q,Lai R,Chirieac LR,Li C,Thomazy VA,Grammatikakis I,Rassidakis GZ,Zhang W,Fujio Y,Kunisada K,Hamilton SR,Amin HM. Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol 2005; 167: 96980.
  • 36
    Zeuner A,Pedini F,Signore M,Ruscio G,Messina C,Tafuri A,Girelli G,Peschle C,De Maria R. Increased death receptor resistance and FLIPshort expression in polycythemia vera erythroid precursor cells. Blood 2006; 107: 3495502.
  • 37
    Silva M,Richard C,Benito A,Sanz C,Olalla I,Fernandez-Luna JL. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N Engl J Med 1998; 338: 56471.
  • 38
    Thiele J,Zirbes TK,Lorenzen J,Kvasnicka HM,Scholz S,Erdmann A,Flucke U,Diehl V,Fischer R. Hematopoietic turnover index in reactive and neoplastic bone marrow lesions: quantification by apoptosis and PCNA labeling. Ann Hematol 1997; 75: 339.
  • 39
    Steidl U,Schroeder T,Steidl C,Kobbe G,Graef T,Bork S,Pechtel S,Kliszewski S,Kuendgen A,Rohr UP,Fenk R,Schroeder M, et al. Distinct gene expression pattern of malignant hematopoietic stem and progenitor cells in polycythemia vera. Ann N Y Acad Sci 2005; 1044: 94108.
  • 40
    Larsen TS,Christensen JH,Hasselbalch HC,Pallisgaard N. The JAK2 V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br J Haematol 2007; 136: 74551.
  • 41
    Lieber MR,Ma Y,Pannicke U,Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 2003; 4: 71220.
  • 42
    Dewald GW,Wright PI. Chromosome abnormalities in the myeloproliferative disorders. Semin Oncol 1995; 22: 34154.
  • 43
    Mayo LD,Turchi JJ,Berberich SJ. Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53. Cancer Res 1997; 57: 50136.
  • 44
    Chiu CP,Dragowska W,Kim NW,Vaziri H,Yui J,Thomas TE,Harley CB,Lansdorp PM. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 1996; 14: 23948.
  • 45
    Schuller CE,Jankowski K,Mackenzie KL. Telomere length of cord blood-derived CD34(+) progenitors predicts erythroid proliferative potential. Leukemia 2007; 21: 98391.
  • 46
    Zimmermann S,Glaser S,Ketteler R,Waller CF,Klingmuller U,Martens UM. Effects of telomerase modulation in human hematopoietic progenitor cells. Stem Cells 2004; 22: 7419.