SEARCH

SEARCH BY CITATION

References

  • 1
    Kim YI. 5,10-Methylenetetrahydrofolate reductase polymorphisms and pharmacogenetics: a new role of single nucleotide polymorphisms in the folate metabolic pathway in human health and disease. Nutr Rev 2005; 63: 398407.
  • 2
    Ueland PM,Hustad S,Schneede J,Refsum H,Vollset SE. Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci 2001; 22: 195201.
  • 3
    Frosst P,Blom HJ,Milos R,Goyette P,Sheppard CA,Matthews RG,Boers GJ,den Heijer M,Kluijtmans LA,van den Heuvel LP, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10: 11113.
  • 4
    Goyette P,Sumner JS,Milos R,Duncan AM,Rosenblatt DS,Matthews RG,Rozen R. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet 1994; 7: 195200.
  • 5
    Jacques PF,Bostom AG,Williams RR,Ellison RC,Eckfeldt JH,Rosenberg IH,Selhub J,Rozen R. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 1996; 93: 79.
  • 6
    Robien K,Ulrich CM. 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a HuGE minireview. Am J Epidemiol 2003; 157: 57182.
  • 7
    Sharp L,Little J. Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a HuGE review. Am J Epidemiol 2004; 159: 42343.
  • 8
    Houlston RS,Tomlinson IP. Polymorphisms and colorectal tumor risk. Gastroenterology 2001; 121: 282301.
  • 9
    de Jong MM,Nolte IM,te Meerman GJ,van der Graaf WT,de Vries EG,Sijmons RH,Hofstra RM,Kleibeuker JH. Low-penetrance genes and their involvement in colorectal cancer susceptibility. Cancer Epidemiol Biomarkers Prev 2002; 11: 133252.
  • 10
    Brockton NT. Localized depletion: the key to colorectal cancer risk mediated by MTHFR genotype and folate? Cancer Causes Control 2006; 17: 100516.
  • 11
    Zintzaras E. Methylenetetrahydrofolate reductase gene and susceptibility to breast cancer: a meta-analysis. Clin Genet 2006; 69: 32736.
  • 12
    Macis D,Maisonneuve P,Johansson H,Bonanni B,Botteri E,Iodice S,Santillo B,Penco S,Gucciardo G,D'Aiuto G,Rosselli Del Turco M,Amadori M, et al. Methylenetetrahydrofolate reductase (MTHFR) and breast cancer risk: a nested-case-control study and a pooled meta-analysis. Breast cancer research and treatment 2007; 106: 26371.
  • 13
    Lewis SJ,Harbord RM,Harris R,Smith GD. Meta-analyses of observational and genetic association studies of folate intakes or levels and breast cancer risk. J Natl Cancer Inst 2006; 98: 160722.
  • 14
    Bagley PJ,Selhub J. A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci USA 1998; 95: 1321720.
  • 15
    Guenther BD,Sheppard CA,Tran P,Rozen R,Matthews RG,Ludwig ML. The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat Struct Biol 1999; 6: 35965.
  • 16
    Yamada K,Chen Z,Rozen R,Matthews RG. Effects of common polymorphisms on the properties of recombinant human methylenetetrahydrofolate reductase. Proc Natl Acad Sci USA 2001; 98: 148538.
  • 17
    Christensen B,Frosst P,Lussier-Cacan S,Selhub J,Goyette P,Rosenblatt DS,Genest J,Jr,Rozen R. Correlation of a common mutation in the methylenetetrahydrofolate reductase gene with plasma homocysteine in patients with premature coronary artery disease. Arterioscler Thromb Vasc Biol 1997; 17: 56973.
  • 18
    Girelli D,Friso S,Trabetti E,Olivieri O,Russo C,Pessotto R,Faccini G,Pignatti PF,Mazzucco A,Corrocher R. Methylenetetrahydrofolate reductase C677T mutation, plasma homocysteine, and folate in subjects from northern Italy with or without angiographically documented severe coronary atherosclerotic disease: evidence for an important genetic-environmental interaction. Blood 1998; 91: 415863.
  • 19
    Verhoef P,Kok FJ,Kluijtmans LA,Blom HJ,Refsum H,Ueland PM,Kruyssen DA. The 677C–>T mutation in the methylenetetrahydrofolate reductase gene: associations with plasma total homocysteine levels and risk of coronary atherosclerotic disease. Atherosclerosis 1997; 132: 10513.
  • 20
    Stern LL,Mason JB,Selhub J,Choi SW. Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomarkers Prev 2000; 9: 84953.
  • 21
    Friso S,Choi SW,Girelli D,Mason JB,Dolnikowski GG,Bagley PJ,Olivieri O,Jacques PF,Rosenberg IH,Corrocher R,Selhub J. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA 2002; 99: 560611.
  • 22
    Shelnutt KP,Kauwell GP,Gregory JF, 3rdManeval DR,Quinlivan EP,Theriaque DW,Henderson GN,Bailey LB. Methylenetetrahydrofolate reductase 677C–>T polymorphism affects DNA methylation in response to controlled folate intake in young women. J Nutr Biochem 2004; 15: 55460.
  • 23
    Castro R,Rivera I,Ravasco P,Camilo ME,Jakobs C,Blom HJ,de Almeida IT. 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C–>T and 1298A–>C mutations are associated with DNA hypomethylation. J Med Genet 2004; 41: 4548.
  • 24
    McNulty H,McKinley MC,Wilson B,McPartlin J,Strain JJ,Weir DG,Scott JM. Impaired functioning of thermolabile methylenetetrahydrofolate reductase is dependent on riboflavin status: implications for riboflavin requirements. Am J Clin Nutr 2002; 76: 43641.
  • 25
    Ma J,Stampfer MJ,Giovannucci E,Artigas C,Hunter DJ,Fuchs C,Willett WC,Selhub J,Hennekens CH,Rozen R. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res 1997; 57: 1098102.
  • 26
    Ames BN. DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat Res 2001; 475: 720.
  • 27
    Fenech M. The role of folic acid and Vitamin B12 in genomic stability of human cells. Mutat Res 2001; 475: 5767.
  • 28
    Kim YI. Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. J Nutr 2005; 135: 27039.
  • 29
    Sohn KJ,Croxford R,Yates Z,Lucock M,Kim YI. Effect of the methylenetetrahydrofolate reductase C677T polymorphism on chemosensitivity of colon and breast cancer cells to 5-fluorouracil and methotrexate. J Natl Cancer Inst 2004; 96: 13444.
  • 30
    Chiang EP,Wang YC,Tang FY. Folate restriction and methylenetetrahydrofolate reductase 677T polymorphism decreases adoMet synthesis via folate-dependent remethylation in human-transformed lymphoblasts. Leukemia 2007; 21: 6518.
  • 31
    Werstuck GH,Lentz SR,Dayal S,Hossain GS,Sood SK,Shi YY,Zhou J,Maeda N,Krisans SK,Malinow MR,Austin RC. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 2001; 107: 126373.
  • 32
    Dickhout JG,Sood SK,Austin RC. Role of endoplasmic reticulum calcium disequilibria in the mechanism of homocysteine-induced ER stress. Antioxidants Redox Signaling 2007; 9: 186373.
  • 33
    Outinen PA,Sood SK,Liaw PC,Sarge KD,Maeda N,Hirsh J,Ribau J,Podor TJ,Weitz JI,Austin RC. Characterization of the stress-inducing effects of homocysteine. Biochem J 1998; 332(Part 1): 21321.
  • 34
    Zhang HS,Xiao JH,Cao EH,Qin JF. Homocysteine inhibits store-mediated calcium entry in human endothelial cells: evidence for involvement of membrane potential and actin cytoskeleton. Mol Cell Biochem 2005; 269: 3747.
  • 35
    Stempak JM,Sohn KJ,Chiang EP,Shane B,Kim YI. Cell and stage of transformation-specific effects of folate deficiency on methionine cycle intermediates and DNA methylation in an in vitro model. Carcinogenesis 2005; 26: 98190.
  • 36
    Laird PW,Zijderveld A,Linders K,Rudnicki MA,Jaenisch R,Berns A. Simplified mammalian DNA isolation procedure. Nucleic Acids Res 1991; 19: 4293.
  • 37
    Ehrlich M,Woods CB,Yu MC,Dubeau L,Yang F,Campan M,Weisenberger DJ,Long T,Youn B,Fiala ES,Laird PW. Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene 2006; 25: 263645.
  • 38
    Weisenberger DJ,Siegmund KD,Campan M,Young J,Long TI,Faasse MA,Kang GH,Widschwendter M,Weener D,Buchanan D,Koh H,Simms L, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006; 38: 78793.
  • 39
    Choi SW,Mason JB. Folate status: effects on pathways of colorectal carcinogenesis. J Nutr 2002; 132: 2413S18S.
  • 40
    Choi SW,Friso S,Ghandour H,Bagley PJ,Selhub J,Mason JB. Vitamin B-12 deficiency induces anomalies of base substitution and methylation in the DNA of rat colonic epithelium. J Nutr 2004; 134: 7505.
  • 41
    Lathrop Stern L,Shane B,Bagley PJ,Nadeau M,Shih V,Selhub J. Combined marginal folate and riboflavin status affect homocysteine methylation in cultured immortalized lymphocytes from persons homozygous for the MTHFR C677T mutation. J Nutr 2003; 133: 271620.
  • 42
    Hayashi I,Sohn KJ,Stempak JM,Croxford R,Kim YI. Folate deficiency induces cell-specific changes in the steady-state transcript levels of genes involved in folate metabolism and 1-carbon transfer reactions in human colonic epithelial cells. J Nutr 2007; 137: 60713.
  • 43
    Selhub J,Miller JW. The pathogenesis of homocysteinemia: interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am J Clin Nutr 1992; 55: 1318.
  • 44
    Ghoshal K,Li X,Datta J,Bai S,Pogribny I,Pogribny M,Huang Y,Young D,Jacob ST. A folate- and methyl-deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344 rats. J Nutr 2006; 136: 15227.
  • 45
    Batra V,Mishra KP. Modulation of DNA methyltransferase profile by methyl donor starvation followed by gamma irradiation. Mol Cell Biochem 2007; 294: 1817.
  • 46
    Robertson KD,Keyomarsi K,Gonzales FA,Velicescu M,Jones PA. Differential mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during the G(0)/G(1) to S phase transition in normal and tumor cells. Nucleic Acids Res 2000; 28: 210813.
  • 47
    Velicescu M,Weisenberger DJ,Gonzales FA,Tsai YC,Nguyen CT,Jones PA. Cell division is required for de novo methylation of CpG islands in bladder cancer cells. Cancer Res 2002; 62: 237884.
  • 48
    Rhee I,Bachman KE,Park BH,Jair KW,Yen RW,Schuebel KE,Cui H,Feinberg AP,Lengauer C,Kinzler KW,Baylin SB,Vogelstein B. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 2002; 416: 5526.
  • 49
    Zbuk KM,Eng C. Hamartomatous polyposis syndromes. Nat Clin Pract 2007; 4: 492502.
  • 50
    Narayanan S,McConnell J,Little J,Sharp L,Piyathilake CJ,Powers H,Basten G,Duthie SJ. Associations between two common variants C677T and A1298C in the methylenetetrahydrofolate reductase gene and measures of folate metabolism and DNA stability (strand breaks, misincorporated uracil, and DNA methylation status) in human lymphocytes in vivo. Cancer Epidemiol Biomarkers Prev 2004; 13: 143643.
  • 51
    Paz MF,Avila S,Fraga MF,Pollan M,Capella G,Peinado MA,Sanchez-Cespedes M,Herman JG,Esteller M. Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res 2002; 62: 451924.
  • 52
    Paz MF,Fraga MF,Avila S,Guo M,Pollan M,Herman JG,Esteller M. A systematic profile of DNA methylation in human cancer cell lines. Cancer Res 2003; 63: 111421.
  • 53
    Kawakami K,Ruszkiewicz A,Bennett G,Moore J,Grieu F,Watanabe G,Iacopetta B. DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer. Br J Cancer 2006; 94: 5938.
  • 54
    Chen Z,Karaplis AC,Ackerman SL,Pogribny IP,Melnyk S,Lussier-Cacan S,Chen MF,Pai A,John SW,Smith RS,Bottiglieri T,Bagley P, et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 2001; 10: 43343.
  • 55
    Devlin AM,Arning E,Bottiglieri T,Faraci FM,Rozen R,Lentz SR. Effect of Mthfr genotype on diet-induced hyperhomocysteinemia and vascular function in mice. Blood 2004; 103: 26249.
  • 56
    Crott JW,Mashiyama ST,Ames BN,Fenech M. The effect of folic acid deficiency and MTHFR C677T polymorphism on chromosome damage in human lymphocytes in vitro. Cancer Epidemiol Biomarkers Prev 2001; 10: 108996.
  • 57
    Crott JW,Mashiyama ST,Ames BN,Fenech MF. Methylenetetrahydrofolate reductase C677T polymorphism does not alter folic acid deficiency-induced uracil incorporation into primary human lymphocyte DNA in vitro. Carcinogenesis 2001; 22: 101925.
  • 58
    Kimura M,Umegaki K,Higuchi M,Thomas P,Fenech M. Methylenetetrahydrofolate reductase C677T polymorphism, folic acid and riboflavin are important determinants of genome stability in cultured human lymphocytes. J Nutr 2004; 134: 4856.
  • 59
    Quinlivan EP,Davis SR,Shelnutt KP,Henderson GN,Ghandour H,Shane B,Selhub J,Bailey LB,Stacpoole PW,Gregory JF,III. Methylenetetrahydrofolate reductase 677C->T polymorphism and folate status affect one-carbon incorporation into human DNA deoxynucleosides. J Nutr 2005; 135: 38996.
  • 60
    Kapiszewska M,Kalemba M,Wojciech U,Milewicz T. Uracil misincorporation into DNA of leukocytes of young women with positive folate balance depends on plasma vitamin B12 concentrations and methylenetetrahydrofolate reductase polymorphisms. A pilot study. J Nutr Biochem 2005; 16: 46778.
  • 61
    Zijno A,Andreoli C,Leopardi P,Marcon F,Rossi S,Caiola S,Verdina A,Galati R,Cafolla A,Crebelli R. Folate status, metabolic genotype, and biomarkers of genotoxicity in healthy subjects. Carcinogenesis 2003; 24: 1097103.