• 1
    Esteller M,Corn PG,Baylin SB,Herman JG. A gene hypermethylation profile of human cancer. Cancer Res 2001; 61: 32259.
  • 2
    Jones PA,Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3: 41528.
  • 3
    Fraga MF,Ballestar E,Paz MF,Ropero S,Setien F,Ballestar ML,Heine-Suñer D,Cigudosa JC,Urioste M,Benitez J,Boix-Chornet M,Sanchez-Aguilera A, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005; 102: 106049.
  • 4
    Marmot M,Atinmo T,Byers T,Chen J,Hirohata T,Jackson A,James WPT,Kolonel LN,Kumanyika S,Leitzmann C,Mann J,Powers HJ, et al., eds. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington, DC: World Cancer Research Fund/American Institute for Cancer Research, 2007. 517p.
  • 5
    van Engeland M,Weijenberg MP,Roemen GM,Brink M,de Bruïne AP,Goldbohm RA,van den Brandt PA,Baylin SB,de Goeij AF,Herman JG. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res 2003; 63: 31337.
  • 6
    Eguchi K,Kanai Y,Kobayashi K,Hirohashi S. DNA hypermethylation at the D17S5 locus in non-small cell lung cancers: its association with smoking history. Cancer Res 1997; 57: 49135.
  • 7
    Kim DH,Nelson HH,Wiencke JK,Zheng S,Christiani DC,Wain JC,Mark EJ,Kelsey KT. p16INK4a and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. Cancer Res 2001; 61: 341924.
  • 8
    Belinsky SA. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 2004; 4: 70717.
  • 9
    Shibuya K,Mathers CD,Boschi-Pinto C,Lopez AD,Murray CJL. Global and regional estimates of cancer mortality and incidence by site. II. Results for the global burden of disease 2000. BMC Cancer 2002; 2: 37.
  • 10
    Yuasa Y. Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat Rev Cancer 2003; 3: 592600.
  • 11
    Tsugane S,Sasazuki S. Diet and the risk of gastric cancer: review of epidemiological evidence. Gastric Cancer 2007; 10: 7583.
  • 12
    Toyota M,Ahuja N,Suzuki H,Itoh F,Ohe-Toyota M,Imai K,Baylin SB,Issa JP. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res 1999; 59: 543842.
  • 13
    Ushijima T,Nakajima T,Maekita T. DNA methylation as a marker for the past and future. J Gastroenterol 2006; 41: 4017.
  • 14
    Kang GH,Lee S,Cho NY,Gandamihardja T,Long TI,Weisenberger DJ,Campan M,Laird PW. DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. Lab Invest 2008; 88: 16170.
  • 15
    Yuasa Y,Nagasaki H,Akiyama Y,Sakai H,Nakajima T,Ohkura Y,Takizawa T,Koike M,Tani M,Iwai T,Sugihara K,Imai K, et al. Relationship between CDX2 gene methylation and dietary factors in gastric cancer patients. Carcinogenesis 2005; 26: 193200.
  • 16
    Wen XZ,Akiyama Y,Baylin SB,Yuasa Y. Frequent epigenetic silencing of the bone morphogenetic protein 2 gene through methylation in gastric carcinomas. Oncogene 2006; 25: 266673.
  • 17
    Leung WK,Yu J,Ng EK,To KF,Ma PK,Lee TL,Go MY,Chung SC,Sung JJ. Concurrent hypermethylation of multiple tumor-related genes in gastric carcinoma and adjacent normal tissues. Cancer 2001; 91: 2294301.
  • 18
    Wanajo A,Sasaki A,Nagasaki H,Shimada S,Otsubo T,Owaki S,Shimizu Y,Eishi Y,Kojima K,Nakajima Y,Kawano T,Yuasa Y, et al. Methylation of the calcium channel-related gene, CACNA2D3, is frequent and a poor prognostic factor in gastric cancer. Gastroenterology 2008; 135: 58090.
  • 19
    Akiyama Y,Watkins N,Suzuki H,Jair KW,van Engeland M,Esteller M,Sakai H,Ren CY,Yuasa Y,Herman JG,Baylin SB. GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol 2003; 23: 842939.
  • 20
    Japanese Gastric Cancer Association. Japanese Classification of Gastric Carcinoma—2nd English Edition. Gastric Cancer 1998; 1: 1024.
  • 21
    Laurén P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. Acta Pathol Microbiol Scand 1965; 64: 3149.
  • 22
    Herman JG,Graff JR,Myohanen S,Nelkin BD,Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 98216.
  • 23
    Tajima K,Tominaga S. Dietary habits and gastro-intestinal cancers: a comparative case-control study of stomach and large intestinal cancers in Nagoya, Japan. Jpn J Cancer Res 1985; 76: 70516.
  • 24
    Mu L-N,Lu Q-Y,Yu S-Z,Jiang Q-W,Cao W,You N-C,Setiawan VW,Zhou X-F,Ding B-G,Wang R-H,Zhao J,Cai L, et al. Green tea drinking and multigenetic index on the risk of stomach cancer in a Chinese population. Int J Cancer 2005; 116: 97283.
  • 25
    Tsubono Y,Nishino Y,Komatsu S,Hsieh CC,Kanemura S,Tsuji I,Nakatsuka H,Fukao A,Satoh H,Hisamichi S. Green tea and the risk of gastric cancer in Japan. N Engl J Med 2001; 344: 6326.
  • 26
    Hoshiyama Y,Kawaguchi T,Miura Y,Mizoue T,Tokui N,Yatsuya H,Sakata K,Kondo T,Kikuchi S,Toyoshima H,Hayakawa N,Tamakoshi A, et al. A prospective study of stomach cancer death in relation to green tea consumption in Japan. Br J Cancer 2002; 87: 30913.
  • 27
    Sasazuki S,Inoue M,Hanaoka T,Yamamoto S,Sobue T,Tsugane S. Green tea consumption and subsequent risk of gastric cancer by subsite: the JPHC Study. Cancer Causes Control 2004; 15: 48391.
  • 28
    Sasazuki S,Inoue M,Miura T,Iwasaki M,Tsugane S. Plasma tea polyphenols and gastric cancer risk: a case-control study nested in a large population-based prospective study in Japan. Cancer Epidemiol Biomarkers Prev 2008; 17: 34351.
  • 29
    Yamane T,Takahashi T,Kuwata K,Oya K,Inagake M,Kitao Y,Suganuma M,Fujiki H. Inhibition of N-methyl-N′-nitro-N-nitrosoguanidine-induced carcinogenesis by (-)-epigallocatechin gallate in the rat glandular stomach. Cancer Res 1995; 55: 20814.
  • 30
    Fang MZ,Wang Y,Ai N,Hou Z,Sun Y,Lu H,Welsh W,Yang CS. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 2003; 63: 756370.
  • 31
    Lee WJ,Shim JY,Zhu BT. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 2005; 68: 101830.
  • 32
    Chuang JC,Yoo CB,Kwan JM,Li TW,Liang G,Yang AS,Jones PA. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther 2005; 4: 151520.
  • 33
    Stresemann C,Brueckner B,Musch T,Stopper H,Lyko F. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res 2006; 66: 2794800.
  • 34
    Campbell PT,Sloan M,Kreiger N. Physical activity and stomach cancer risk: the influence of intensity and timing during the lifetime. Eur J Cancer 2007; 43: 593600.
  • 35
    Sjödahl K,Jia C,Vatten L,Nilsen T,Hveem K,Lagergren J. Body mass and physical activity and risk of gastric cancer in a population-based cohort study in Norway. Cancer Epidemiol Biomarkers Prev 2008; 17: 13540.
  • 36
    Coyle YM,Xie X-J,Lewis CM,Bu D,Milchgrub S,Euhus DM. Role of physical activity in modulating breast cancer risk as defined by APC and RASSF1A promoter hypermethylation in nonmalignant breast tissue. Cancer Epidemiol Biomarkers Prev 2007; 16: 1926.