SEARCH

SEARCH BY CITATION

Keywords:

  • SOX5;
  • prostate cancer;
  • SMAL-PCR DNA fingerprinting;
  • LCM;
  • chromosome 12p12.1

Abstract

Identification of genomic alterations associated with the progression of prostate cancer may facilitate the better understanding of the development of this highly variable disease. Matched normal, premalignant high-grade prostatic intraepithelial neoplasia and invasive prostate carcinoma cells were procured by laser capture microdissection (LCM) from human radical prostatectomy specimens. From these cells, comparative DNA fingerprints were generated by a modified PCR-based technique called scanning of microdissected archival lesion (SMAL)-PCR. Recurrent polymorphic fingerprint fragments were used in tagging altered chromosomal regions. Altered regions were found at cytobands 1p31.3, 1q44, 2p23.1, 3p26.3, 3q22.3, 4q22.3, 4q35.2, 5q23.2, 8q22.3, 8q24.13, 9q21.3, 9q22.32, 10q11.21, 11p13, 12p12.1, 13q12.1, 16q12.2 and 18q21.31. Candidate genes in the surrounding area that may possibly harbor mutations that change normal prostatic cells to progress into their tumor stages were proposed. Of these fragments, a 420 bp alteration, absent in all 26 normal samples screened, was observed in 2 tumors. This fragment was cloned, sequenced and localized to chromosome 12p12.1. Within this region, candidate gene sex determining region Y-box 5 (SOX5) was proposed. Further studies of SOX5 in cell lines, xenografts and human prostate specimens, at both the RNA and protein levels, found overexpression of the gene in tumors. This overexpression was then subsequently found by fluorescent in situ hybridization to be caused by amplification of the region. In conclusion, our results suggest LCM coupled with SMAL-PCR DNA fingerprinting is a useful method for the screening and identification of chromosomal regions and genes associated with cancer development. Further, overexpression of SOX5 is associated with prostate tumor progression and early development of distant metastasis. © 2008 Wiley-Liss, Inc.