SEARCH

SEARCH BY CITATION

References

  • 1
    Tomlins SA,Rubin MA,Chinnaiyan AM. Integrative biology of prostate cancer progression. Annu Rev Pathol 2006; 1: 24371.
  • 2
    Feldman BJ,Feldman D. The development of androgen-independent prostate cancer. Nat Rev 2001; 1: 3445.
  • 3
    Nelson EC,Cambio AJ,Yang JC,Ok JH,Lara PN,Jr,Evans CP. Clinical implications of neuroendocrine differentiation in prostate cancer. Prostate Cancer Prostatic Dis 2007; 10: 614.
  • 4
    Cindolo L,Cantile M,Vacherot F,Terry S,de la Taille A. Neuroendocrine differentiation in prostate cancer: from lab to bedside. Urol Int 2007; 79: 28796.
  • 5
    Montuenga LM,Guembe L,Burrell MA,Bodegas ME,Calvo A,Sola JJ,Sesma P,Villaro AC. The diffuse endocrine system: from embryogenesis to carcinogenesis. Prog Histochem Cytochem 2003; 38: 155272.
  • 6
    Slovin SF. Neuroendocrine differentiation in prostate cancer: a sheep in wolf's clothing? Nat Clin Pract Urol 2006; 3: 13844.
  • 7
    Wright ME,Tsai MJ,Aebersold R. Androgen receptor represses the neuroendocrine transdifferentiation process in prostate cancer cells. Mol Endocrinol 2003; 17: 172637.
  • 8
    Cox ME,Deeble PD,Lakhani S,Parsons SJ. Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression. Cancer Res 1999; 59: 382130.
  • 9
    Qiu Y,Robinson D,Pretlow TG,Kung HJ. Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3′-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells. Proc Natl Acad Sci USA 1998; 95: 36449.
  • 10
    Sainz RM,Mayo JC,Tan DX,Leon J,Manchester L,Reiter RJ. Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate 2005; 63: 2943.
  • 11
    Mukhopadhyay A,Bueso-Ramos C,Chatterjee D,Pantazis P,Aggarwal BB. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 2001; 20: 7597609.
  • 12
    Collado B,Gutierrez-Canas I,Rodriguez-Henche N,Prieto JC,Carmena MJ. Vasoactive intestinal peptide increases vascular endothelial growth factor expression and neuroendocrine differentiation in human prostate cancer LNCaP cells. Regul Pept 2004; 119: 6975.
  • 13
    McConkey DJ,Greene G,Pettaway CA. Apoptosis resistance increases with metastatic potential in cells of the human LNCaP prostate carcinoma line. Cancer Res 1996; 56: 55949.
  • 14
    Bruckheimer EM,Brisbay S,Johnson DJ,Gingrich JR,Greenberg N,McDonnell TJ. Bcl-2 accelerates multistep prostate carcinogenesis in vivo. Oncogene 2000; 19: 52518.
  • 15
    Karin M. NF-kappaB and cancer: mechanisms and targets. Mol Carcinog 2006; 45: 35561.
  • 16
    Harman D. Free radical theory of aging: effect of free radical reaction inhibitors on the mortality rate of male LAF mice. J Gerontol 1968; 23: 47682.
  • 17
    Hussain SP,Hofseth LJ,Harris CC. Radical causes of cancer. Nature Rev 2003; 3: 27685.
  • 18
    Yamanaka N,Deamer D. Superoxide dismutase activity in WI-38 cell cultures: effects of age, trypsinization and SV-40 transformation. Physiol Chem Phys 1974; 6: 95106.
  • 19
    Oberley LW,Oberley TD. Role of antioxidant enzymes in cell immortalization and transformation. Mol Cell Biochem 1988; 84: 14753.
  • 20
    Oberley TD. Mitochondria, manganese superoxide dismutase, and cancer. Antioxid Redox Signal 2004; 6: 4837.
  • 21
    Ridnour LA,Oberley TD,Oberley LW. Tumor suppressive effects of MnSOD overexpression may involve imbalance in peroxide generation versus peroxide removal. Antioxid Redox Signal 2004; 6: 50112.
  • 22
    Sharifi N,Hurt EM,Thomas SB,Farrar WL. Effects of manganese superoxide dismutase silencing on androgen receptor function and gene regulation: implications for castration-resistant prostate cancer. Clin Cancer Res 2008; 14: 607380.
  • 23
    Crapo JD,McCord JM,Fridovich I. Preparation and assay of superoxide dismutases. Methods Enzymol 1978; 53: 38293.
  • 24
    Sainz RM,Reiter RJ,Tan DX,Roldan F,Natarajan M,Quiros I,Hevia D,Rodriguez C,Mayo JC. Critical role of glutathione in melatonin enhancement of tumor necrosis factor and ionizing radiation-induced apoptosis in prostate cancer cells in vitro. J Pineal Res 2008; 45: 25870.
  • 25
    Bravard A,Sabatier L,Hoffschir F,Ricoul M,Luccioni C,Dutrillaux B. SOD2: a new type of tumor-suppressor gene? Int J Cancer 1992; 51: 47680.
  • 26
    Mayo JC,Sainz RM,Antoli I,Herrera F,Martin V,Rodriguez C. Melatonin regulation of antioxidant enzyme gene expression. Cell Mol Life Sci 2002; 59: 170613.
  • 27
    Halliwell B,Gutteridge JMC. Free radicals in biology and medicine, 4th edn. New York: Oxford University Press, 2007.
  • 28
    Lebovitz RM,Zhang H,Vogel H,Cartwright J,Jr,Dionne L,Lu N,Huang S,Matzuk MM. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA 1996; 93: 97827.
  • 29
    Burch PM,Heintz NH. Redox regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species. Antioxid Redox Signal 2005; 7: 74151.
  • 30
    Oberley LW,Ridnour LA,Sierra-Rivera E,Oberley TD,Guernsey DL. Superoxide dismutase activities of differentiating clones from an immortal cell line. J Cell Physiol 1989; 138: 5060.
  • 31
    Fang GC,Hanau RM,Vaillancourt LJ. The SOD2 gene, encoding a manganese-type superoxide dismutase, is up-regulated during conidiogenesis in the plant-pathogenic fungus Colletotrichum graminicola. Fungal Genet Biol 2002; 36: 15565.
  • 32
    Kiningham KK,Cardozo ZA,Cook C,Cole MP,Stewart JC,Tassone M,Coleman MC,Spitz DR. All-trans-retinoic acid induces manganese superoxide dismutase in human neuroblastoma through NF-kappaB. Free Radic Biol Med 2008; 44: 16106.
  • 33
    Mariucci G,Ambrosini MV,Colarieti L,Bruschelli G. Differential changes in Cu, Zn and Mn superoxide dismutase activity in developing rat brain and liver. Experientia 1990; 46: 7535.
  • 34
    St Clair DK,Oberley TD,Muse KE,St Clair WH. Expression of manganese superoxide dismutase promotes cellular differentiation. Free Radic Biol Med 1994; 16: 27582.
  • 35
    Zhao Y,Kiningham KK,Lin SM,St Clair DK. Overexpression of MnSOD protects murine fibrosarcoma cells (FSa-II) from apoptosis and promotes a differentiation program upon treatment with 5-azacytidine: involvement of MAPK and NFkappaB pathways. Antioxid Redox Signal 2001; 3: 37586.
  • 36
    Sarsour EH,Venkataraman S,Kalen AL,Oberley LW,Goswami PC. Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth. Aging Cell 2008; 7: 40517.
  • 37
    Franco AA,Odom RS,Rando TA. Regulation of antioxidant enzyme gene expression in response to oxidative stress and during differentiation of mouse skeletal muscle. Free Radic Biol Med 1999; 27: 112232.
  • 38
    Fan M,Ahmed KM,Coleman MC,Spitz DR,Li JJ. Nuclear factor-kappaB and manganese superoxide dismutase mediate adaptive radioresistance in low-dose irradiated mouse skin epithelial cells. Cancer Res 2007; 67: 32208.
  • 39
    Deng X,Liu H,Huang J,Cheng L,Keller ET,Parsons SJ,Hu CD. Ionizing radiation induces prostate cancer neuroendocrine differentiation through interplay of CREB and ATF2: implications for disease progression. Cancer Res 2008; 68: 966370.
  • 40
    Zi X,Agarwal R. Silibinin decreases prostate-specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: implications for prostate cancer intervention. Proc Natl Acad Sci USA 1999; 96: 74905.
  • 41
    Roy S,Kaur M,Agarwal C,Tecklenburg M,Sclafani RA,Agarwal R. p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells. Mol Cancer Ther 2007; 6: 2696707.
  • 42
    Shukla S,Gupta S. Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation. Free Radic Biol Med 2008; 44: 183345.
  • 43
    Xiang N,Zhao R,Zhong W. Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cells. Cancer Chemother Pharmacol 2008; 63: 35162.
  • 44
    Hirano D,Okada Y,Minei S,Takimoto Y,Nemoto N. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol 2004; 45: 58692; discussion 92.
  • 45
    Hansson J,Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma. Scand J Urol Nephrol Suppl 2003: 2836.
  • 46
    Yuan TC,Veeramani S,Lin MF. Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr Relat Cancer 2007; 14: 53147.