• 1
    Yatani R, Chigusa I, Akazaki K, Stemmermann G, Welsh R, Correa P. Geographic pathology of latent prostatic carcinoma. Int J Cancer 1982; 29: 6116.
  • 2
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 7196.
  • 3
    Loeb S, Catalona WJ. What to do with an abnormal PSA test. Oncologist 2008; 13: 299305.
  • 4
    Welch HG, Fisher ES, Gottlieb DJ, Barry MJ. Detection of prostate cancer via biopsy in the Medicare-SEER population during the PSA era. J Natl Cancer Inst 2007; 99: 1395400.
  • 5
    Dakubo GD, Jakupciak JP, Birch-Machin MA, Parr RL. Clinical implications and utility of field cancerization. Cancer Cell Int 2007; 7: 2.
  • 6
    Grover AC, Tangrea MA, Woodson KG, Wallis BS, Hanson JC, Chuaqui RF, Gillespie JW, Erickson HS, Bonner RF, Pohida TJ, Emmert-Buck MR, Libutti SK. Tumor-associated endothelial cells display GSTP1 and RARbeta2 promoter methylation in human prostate cancer. J Transl Med 2006; 4: 13.
  • 7
    McDonald SA, Greaves LC, Gutierrez-Gonzalez L, Rodriguez-Justo M, Deheragoda M, Leedham SJ, Taylor RW, Lee CY, Preston SL, Lovell M, Hunt T, Elia G, Oukrif D, Harrison R, Novelli MR, Mitchell I, Stoker DL, Turnbull DM, Jankowski JA, Wright NA. Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. Gastroenterology 2008; 134: 50010.
  • 8
    Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 1953; 6: 9638.
  • 9
    Ushijima T. Epigenetic field for cancerization. J Biochem Mol Biol 2007; 40: 14250.
  • 10
    Huang D, Casale GP, Tian J, Wehbi NK, Abrahams NA, Kaleem Z, Smith LM, Johansson SL, Elkahwaji JE, Hemstreet GP,III. Quantitative fluorescence imaging analysis for cancer biomarker discovery: application to beta-catenin in archived prostate specimens. Cancer Epidemiol Biomarkers Prev 2007; 16: 137181.
  • 11
    Lokeshwar VB, Rubinowicz D, Schroeder GL, Forgacs E, Minna JD, Block NL, Nadji M, Lokeshwar BL. Stromal and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in prostate cancer. J Biol Chem 2001; 276: 1192232.
  • 12
    Tammi RH, Kultti A, Kosma VM, Pirinen R, Auvinen P, Tammi MI. Hyaluronan in human tumors: Pathobiological and prognostic messages from cell-associated and stromal hyaluronan. Semin Cancer Biol 2008; 18: 28895.
  • 13
    Ekici S, Cerwinka WH, Duncan R, Gomez P, Civantos F, Soloway MS, Lokeshwar VB. Comparison of the prognostic potential of hyaluronic acid, hyaluronidase (HYAL-1), CD44v6 and microvessel density for prostate cancer. Int J Cancer 2004; 112: 1219.
  • 14
    Posey JT, Soloway MS, Ekici S, Sofer M, Civantos F, Duncan RC, Lokeshwar VB. Evaluation of the prognostic potential of hyaluronic acid and hyaluronidase (HYAL1) for prostate cancer. Cancer Res 2003; 63: 263844.
  • 15
    Bharadwaj AG, Rector K, Simpson MA. Inducible hyaluronan production reveals differential effects on prostate tumor cell growth and tumor angiogenesis. J Biol Chem 2007; 282: 2056172.
  • 16
    Ricciardelli C, Russell DL, Ween MP, Mayne K, Suwiwat S, Byers S, Marshall VR, Tilley WD, Horsfall DJ. Formation of hyaluronan- and versican-rich pericellular matrix by prostate cancer cells promotes cell motility. J Biol Chem 2007; 282: 1081425.
  • 17
    Simpson MA, Wilson CM, McCarthy JB. Inhibition of prostate tumor cell hyaluronan synthesis impairs subcutaneous growth and vascularization in immunocompromised mice. Am J Pathol 2002; 161: 84957.
  • 18
    Draffin JE, McFarlane S, Hill A, Johnston PG, Waugh DJ. CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 2004; 64: 570211.
  • 19
    Lin SL, Chang D, Chiang A, Ying SY. Androgen receptor regulates CD168 expression and signaling in prostate cancer. Carcinogenesis 2008; 29: 28290.
  • 20
    Miyake H, Hara I, Okamoto I, Gohji K, Yamanaka K, Arakawa S, Saya H, Kamidono S. Interaction between CD44 and hyaluronic acid regulates human prostate cancer development. J Urol 1998; 160: 15626.
  • 21
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65: 1094651.
  • 22
    Maitland NJ, Collins A. A tumour stem cell hypothesis for the origins of prostate cancer. BJ U Int 2005; 96: 121923.
  • 23
    Kasper S. Characterizing the prostate stem cell. J Urol 2007; 178: 375.
  • 24
    Lin VK, Wang SY, Vazquez DV, Xu C, Zhang S, Tang L. Prostatic stromal cells derived from benign prostatic hyperplasia specimens possess stem cell like property. Prostate 2007; 67: 126576.
  • 25
    Wei C, Guomin W, Yujun L, Ruizhe Q. Cancer stem-like cells in human prostate carcinoma cells DU145: the seeds of the cell line? Cancer Biol Ther 2007; 6: 7638.
  • 26
    Gu G, Yuan J, Wills M, Kasper S. Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 2007; 67: 480715.
  • 27
    Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL. CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 2008; 98: 75665.
  • 28
    Lin SL, Chang D, Ying SY. Hyaluronan stimulates transformation of androgen-independent prostate cancer. Carcinogenesis 2007; 28: 31020.
  • 29
    Chouinard S, Yueh MF, Tukey RH, Giton F, Fiet J, Pelletier G, Barbier O, Belanger A. Inactivation by UDP-glucuronosyltransferase enzymes: the end of androgen signaling. J Steroid Biochem Mol Biol 2008; 109: 24753.
  • 30
    Chouinard S, Pelletier G, Belanger A, Barbier O. Cellular specific expression of the androgen-conjugating enzymes UGT2B15 and UGT2B17 in the human prostate epithelium. Endocr Res 2004; 30: 71725.
  • 31
    Chouinard S, Pelletier G, Belanger A, Barbier O. Isoform-specific regulation of uridine diphosphate-glucuronosyltransferase 2B enzymes in the human prostate: differential consequences for androgen and bioactive lipid inactivation. Endocrinology 2006; 147: 543142.
  • 32
    Chouinard S, Barbier O, Belanger A. UDP-glucuronosyltransferase 2B15 (UGT2B15) and UGT2B17 enzymes are major determinants of the androgen response in prostate cancer LNCaP cells. J Biol Chem 2007; 282: 3346674.
  • 33
    Wei Q, Galbenus R, Raza A, Cerny RL, Simpson MA. Androgen-stimulated UDP-glucose dehydrogenase expression limits prostate androgen availability without impacting hyaluronan levels. Cancer Res 2009; 69: 23329.
  • 34
    Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, Emmert-Buck MR, Roth MJ, PetricoinIIIEF, Liotta LA. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 2001; 20: 19819.
  • 35
    Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB, Kornblau SM. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 2006; 5: 251221.
  • 36
    Lalani EN, Golding M, Hudson M, Chieffi G, Stamp G, Anilkumar TV, Sarraf C, Alison MR. Protein extraction and western blotting from methacarn-fixed tissue. J Pathol 1995; 177: 3238.
  • 37
    Shibutani M, Uneyama C, Miyazaki K, Toyoda K, Hirose M. Methacarn fixation: a novel tool for analysis of gene expressions in paraffin-embedded tissue specimens. Lab Invest 2000; 80: 199208.
  • 38
    Kroll J, Becker KF, Kuphal S, Hein R, Hofstadter F, Bosserhoff AK. Isolation of high quality protein samples from punches of formalin fixed and paraffin embedded tissue blocks. Histol Histopathol 2008; 23: 3915.
  • 39
    Hemstreet GP, Bonner RB, Rao JY, Hurst RE, Bane B. G-actin levels as a marker for malignancy within the prostate. J Urol 1993; 194: 334A.
  • 40
    Rao JY, Hemstreet GP,III, Hurst RE, Bonner RB, Jones PL, Min KW, Fradet Y. Alter-ations in phenotypic biochemical markers in bladder epithelium during tumorigenesis. Proc Natl Acad Sci USA 1993; 90: 828791.
  • 41
    Rao JY, Hemstreet GP, Bonner RB, Hurst RE, Qiu WR, Reznikoff CA. Nuclear actin as a biomarker for bladder cancer risk assessment. J Urol 1994; 151: 349A; Abstract.
  • 42
    Camp RL, Chung GG, Rimm DL. Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med 2002; 8: 13237.
  • 43
    McCabe A, Dolled-Filhart M, Camp RL, Rimm DL. Automated quantitative analysis (AQUA) of in situ protein expression, antibody concentration, and prognosis. J Natl Cancer Inst. 2005; 97: 180815.
  • 44
    Kramer G, Steiner GE, Neumayer C, Prinz-Kashani M, Hohenfellner M, Gomha M, Ghoneim M, Newman M, Marberger M. Over-expression of anti-CD75 reactive proteins on distal and collecting renal tubular epithelial cells in calcium-oxalate stone-forming kidneys in Egypt. BJ U Int 2004; 93: 8226.
  • 45
    Streit M, Ecker RC, Osterreicher K, Steiner GE, Bischof H, Bangert C, Kopp T, Rogojanu R. 3D parallel coordinate systems–a new data visualization method in the context of microscopy-based multicolor tissue cytometry. Cytometry A 2006; 69: 60111.
  • 46
    Simpson MA, Lokeshwar VB. Hyaluronan and hyaluronidase in genitourinary tumors. Front Biosci 2008; 13: 566480.
  • 47
    Bourguignon LY, Peyrollier K, Xia W, Gilad E. Hyaluronan-CD44 interaction activates stem cell marker, nanog, stat-3-mediated MDR1 gene expression and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem 2008; 283: 1763551.
  • 48
    Itano N, Kimata K. Altered hyaluronan biosynthesis in cancer progression. Semin Cancer Biol 2008; 18: 26874.
  • 49
    Suzuki M, Kobayashi H, Kanayama N, Nishida T, Takigawa M, Terao T. CD44 stimulation by fragmented hyaluronic acid induces upregulation and tyrosine phosphorylation of c-Met receptor protein in human chondrosarcoma cells. Biochim Biophys Acta 2002; 1591: 3744.
  • 50
    Suzuki M, Kobayashi H, Kanayama N, Nishida T, Takigawa M, Terao T. CD44 stimulation by fragmented hyaluronic acid induces upregulation and tyrosine phosphorylation of c-Met receptor protein in human chondrosarcoma cells. Biochim Biophys Acta 2002; 1591: 3744.
  • 51
    Hanson JA, Gillespie JW, Grover A, Tangrea MA, Chuaqui RF, Emmert-Buck MR, Tangrea JA, Libutti SK, Linehan WM, Woodson KG. Gene promoter methylation in prostate tumor-associated stromal cells. J Natl Cancer Inst 2006; 98: 25561.
  • 52
    Hemstreet GP,III, Yin S, Ma Z, Bonner RB, Bi W, Rao JY, Zang M, Zheng Q, Bane B, Asal N, Li G, Feng P, Hurst RE, Wang W. Biomarker risk assessment and bladder cancer detection in a cohort exposed to benzidine. J Natl Cancer Inst 2001; 93: 42736.
  • 53
    Bolton EC, So AY, Chaivorapol C, Ha CM, Li H, Yamamoto KR. Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 2007; 21: 200517.
  • 54
    Park J, Chen L, Shade K, Lazarus P, Seigne J, Patterson S, Helal M, Pow-Sang J. Asp85tyr polymorphism in the udp-glucuronosyltransferase (UGT) 2B15 gene and the risk of prostate cancer. J Urol 2004; 171: 24848.
  • 55
    Kelavkar UP, Glasgow W, Olson SJ, Foster BA, Shappell SB. Overexpression of 12/15-lipoxygenase, an ortholog of human 15-lipoxygenase-1, in the prostate tumors of TRAMP mice. Neoplasia 2004; 6: 82130.
  • 56
    Kelavkar UP, Harya NS, Hutzley J, Bacich DJ, Monzon FA, Chandran U, Dhir R, O'Keefe DS. DNA methylation paradigm shift: 15-lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation. Prostaglandins Other Lipid Mediat 2007; 82: 18597.
  • 57
    Hsi LC, Wilson LC, Eling TE. Opposing effects of 15-lipoxygenase-1 and -2 metabolites on MAPK signaling in prostate. Alteration in peroxisome proliferator-activated receptor gamma. J Biol Chem 2002; 277: 4054956.
  • 58
    Kelavkar UP, Cohen C. 15-lipoxygenase-1 expression upregulates and activates insulin-like growth factor-1 receptor in prostate cancer cells. Neoplasia 2004; 6: 4152.
  • 59
    Spindler SA, Sarkar FH, Sakr WA, Blackburn ML, Bull AW, LaGattuta M, Reddy RG. Production of 13-hydroxyoctadecadienoic acid (13-HODE) by prostate tumors and cell lines. Biochem Biophys Res Commun 1997; 239: 77581.
  • 60
    Vatsyayan J, Lin CT, Peng HL, Chang HY. Identification of a cis-acting element responsible for negative regulation of the human UDP-glucose dehydrogenase gene expression. Biosci Biotechnol Biochem 2006; 70: 40110.
  • 61
    Bontemps Y, Vuillermoz B, Antonicelli F, Perreau C, Danan JL, Maquart FX, Wegrowski Y. Specific protein-1 is a universal regulator of UDP-glucose dehydrogenase expression: its positive involvement in transforming growth factor-beta signaling and inhibition in hypoxia. J Biol Chem 2003; 278: 2156675.
  • 62
    Vatsyayan J, Peng HL, Chang HY. Analysis of human UDP-glucose dehydrogenase gene promoter: identification of an Sp1 binding site crucial for the expression of the large transcript. J Biochem 2005; 137: 7039.
  • 63
    Wei S, Chuang HC, Tsai WC, Yang HC, Ho SR, Paterson AJ, Kulp SK, Chen CS. Thiazolidinediones mimic glucose starvation in facilitating Sp1 degradation through the upregulation of {beta}-TRCP. Mol Pharmacol 2009; 76: 4757.
  • 64
    Hemstreet GP, Wang W. Genotypic and phenotypic biomarker profiles for individual risk assessment and cancer detection (lessons from bladder cancer risk assessment in symptomatic patients and workers exposed to benzidine). Front Biosci 2004; 9: 26719.
  • 65
    Hemstreet GP, Hurst RE, Bonner RB. Selection and development of biomarkers for bladder cancer. In: HanausekM, WalaszekZ, eds. Tumor marker protocols. Totowa, NJ: Humana Press, 1998. 3760.