SEARCH

SEARCH BY CITATION

References

  • 1
    Mundy GR. Mechanisms of bone metastasis. Cancer 1997; 80: 154656.
  • 2
    Clohisy DR, Mantyh PW. Bone cancer pain. Cancer 2003; 97: 86673.
  • 3
    Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002; 2: 58493.
  • 4
    Kakonen SM, Mundy GR. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer 2003; 97: 8349.
  • 5
    Agrawal D, Chen T, Irby R, Quackenbush J, Chambers AF, Szabo M, Cantor A, Coppola D, Yeatman TJ. Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst 2002; 94: 51321.
  • 6
    Franzen A, Heinegard D. Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem J 1985; 232: 71524.
  • 7
    Rudland PS, Platt-Higgins A, El-Tanani M, De Silva Rudland S, Barraclough R, Winstanley JH, Howitt R, West CR. Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Res 2002; 62: 341727.
  • 8
    Tuck AB, Chambers AF. The role of osteopontin in breast cancer: clinical and experimental studies. J Mammary Gland Biol Neoplasia 2001; 6: 41929.
  • 9
    Rosol TJ. Pathogenesis of bone metastases: role of tumor-related proteins. J Bone Miner Res 2000; 15: 84450.
  • 10
    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3: 53749.
  • 11
    Adwan H, Bauerle T, Najajreh Y, Elazer V, Golomb G, Berger MR. Decreased levels of osteopontin and bone sialoprotein II are correlated with reduced proliferation, colony formation, and migration of GFP-MDA-MB-231 cells. Int J Oncol 2004; 24: 123544.
  • 12
    Adwan H, Bauerle TJ, Berger MR. Downregulation of osteopontin and bone sialoprotein II is related to reduced colony formation and metastasis formation of MDA-MB-231 human breast cancer cells. Cancer Gene Ther 2004; 11: 10920.
  • 13
    Akhtar S, Juliano RL. Cellular uptake and intracellular fate of antisense oligonucleotides. Trends Cell Biol 1992; 2: 13944.
  • 14
    Patil SD, Rhodes DG, Burgess DJ. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 2005; 7: E61E77.
  • 15
    Kurreck J. Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 2003; 270: 162844.
  • 16
    Mahato RI, Takakura Y, Hashida M. Development of targeted delivery systems for nucleic acid drugs. J Drug Target 1997; 4: 33757.
  • 17
    Smith AE. Viral vectors in gene therapy. Annu Rev Microbiol 1995; 49: 80738.
  • 18
    Ledley FD. Non-viral gene therapy. Curr Opin Biotechnol 1994; 5: 62636.
  • 19
    Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997; 28: 524.
  • 20
    Cohen H, Levy RJ, Gao J, Fishbein I, Kousaev V, Sosnowski S, Slomkowski S, Golomb G. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther 2000; 7: 1896905.
  • 21
    Cohen-Sacks H, Najajreh Y, Tchaikovski V, Gao G, Elazer V, Dahan R, Gati I, Kanaan M, Waltenberger J, Golomb G. Novel PDGFbetaR antisense encapsulated in polymeric nanospheres for the treatment of restenosis. Gene Ther 2002; 9: 160716.
  • 22
    Bauerle T, Adwan H, Kiessling F, Hilbig H, Armbruster FP, Berger MR. Characterization of a rat model with site-specific bone metastasis induced by MDA-MB-231 breast cancer cells and its application to the effects of an antibody against bone sialoprotein. Int J Cancer 2005; 115: 17786.
  • 23
    Ledley FD. Pharmaceutical approach to somatic gene therapy. Pharm Res 1996; 13: 1595614.
  • 24
    Niven R, Zhang Y, Smith J. Toward development of a non-viral gene therapeutic. Adv Drug Deliv Rev 1997; 26: 13550.
  • 25
    Leong KW, Mao HQ, Truong-Le VL, Roy K, Walsh SM, August JT. DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release 1998; 53: 18393.
  • 26
    Fattal E, Bochot A. State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers. Int J Pharm 2008; 364: 23748.
  • 27
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008; 5: 50515.
  • 28
    Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 2008; 5: 48795.
  • 29
    Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41: 189207.
  • 30
    Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 2009; 133: 905.
  • 31
    Zobel HP, Werner D, Gilbert M, Noe CR, Stieneker F, Kreuter J, Zimmer A. Effect of ultrasonication on the stability of oligonucleotides adsorbed on nanoparticles and liposomes. J Microencapsul 1999; 16: 5019.
  • 32
    Ando S, Putnam D, Pack DW, Langer R. PLGA microspheres containing plasmid DNA: preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization. J Pharm Sci 1999; 88: 12630.
  • 33
    Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev 2006; 58: 1688713.
  • 34
    Liversidge G, Phillips C, Cundy K. Method to reduce particle size growth during lyophilization. US Patent 5,302,401. 1994.
  • 35
    Jaaskelainen I, Urtti A. Cell membranes as barriers for the use of antisense therapeutic agents. Mini Rev Med Chem 2002; 2: 30718.
  • 36
    Lebedeva I, Benimetskaya L, Stein CA, Vilenchik M. Cellular delivery of antisense oligonucleotides. Eur J Pharm Biopharm 2000; 50: 10119.
  • 37
    Juliano RL, Alahari S, Yoo H, Kole R, Cho M. Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. Pharm Res 1999; 16: 494502.
  • 38
    Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004; 56: 164959.
  • 39
    Denhardt DT, Giachelli CM, Rittling SR. Role of osteopontin in cellular signaling and toxicant injury. Annu Rev Pharmacol Toxicol 2001; 41: 72349.
  • 40
    Khan SA, Lopez-Chua CA, Zhang J, Fisher LW, Sorensen ES, Denhardt DT. Soluble osteopontin inhibits apoptosis of adherent endothelial cells deprived of growth factors. J Cell Biochem 2002; 85: 72836.
  • 41
    Kawakami S, Higuchi Y, Hashida M. Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J Pharm Sci 2008; 97: 72645.
  • 42
    Muthu MS, Singh S. Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. Nanomed 2009; 4: 10518.