SEARCH

SEARCH BY CITATION

References

  • 1
    Gattinoni L, Powell DJ, Rosenberg S, Restifo N. Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 2006; 6: 38393.
  • 2
    Fang L, Lonsdorf A, Hwang S. Immunotherapy for advanced melanoma. J Invest Dermatol 2008; 128: 2596605.
  • 3
    Copier J, Dalgleish A, Britten C, Finke L, Gaudernack G, Gnjatic S, Kallen K, Kiessling R, Schuessler-Lenz M, Singh H, Talmadge J, Zwierzina H, et al. Improving the efficacy of cancer immunotherapy. Eur J Cancer 2009; 45: 142431.
  • 4
    Disis M, Bernhard H, Jaffee E. Use of tumour-responsive T cells as cancer treatment. Lancet 2009; 373: 67383.
  • 5
    Yoshitake Y, Nakatsura T, Monji M, Senju S, Matsuyoshi H, Tsukamoto H, Hosaka S, Komori H, Fukuma D, Ikuta Y, Katagiri T, Furukawa Y, et al. Proliferation potential-related protein, an ideal esophageal cancer antigen for immunotherapy, identified using complementary DNA microarray analysis. Clin Cancer Res 2004; 10: 643748.
  • 6
    Komori H, Nakatsura T, Senju S, Yoshitake Y, Motomura Y, Ikuta Y, Fukuma D, Yokomine K, Harao M, Beppu T, Matsui M, Torigoe T, et al. Identification of HLA-A2- or HLA-A24-restricted CTL epitopes possibly useful for glypican-3-specific immunotherapy of hepatocellular carcinoma. Clin Cancer Res 2006; 12: 268997.
  • 7
    Imai K, Hirata S, Irie A, Senju S, Ikuta Y, Yokomine K, Harao M, Inoue M, Tsunoda T, Nakatsuru S, Nakagawa H, Nakamura Y, et al. Identification of a novel tumor-associated antigen, cadherin 3/P-cadherin, as a possible target for immunotherapy of pancreatic, gastric, and colorectal cancers. Clin Cancer Res 2008; 14: 648795.
  • 8
    Jinawath N, Furukawa Y, Hasegawa S, Li M, Tsunoda T, Satoh S, Yamaguchi T, Imamura H, Inoue M, Shiozaki H, Nakamura Y. Comparison of gene-expression profiles between diffuse- and intestinal-type gastric cancers using a genome-wide cDNA microarray. Oncogene 2004; 23: 683044.
  • 9
    Bradshaw A, Sage E. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest 2001; 107: 104954.
  • 10
    Yan Q, Sage E. SPARC, a matricellular glycoprotein with important biological functions. J Histochem Cytochem 1999; 47: 1495506.
  • 11
    Brekken R, Sage E. SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol 2001; 19: 81627.
  • 12
    Inoue H, Matsuyama A, Mimori K, Ueo H, Mori M. Prognostic score of gastric cancer determined by cDNA microarray. Clin Cancer Res 2002; 8: 34759.
  • 13
    Wang C, Lin K, Chen S, Chan Y, Hsueh S. Overexpression of SPARC gene in human gastric carcinoma and its clinic-pathologic significance. Br J Cancer 2004; 91: 192430.
  • 14
    Maeng H, Song S, Choi D, Kim K, Jeong H, Sakaki Y, Furihata C. Osteonectin-expressing cells in human stomach cancer and their possible clinical significance. Cancer Lett 2002; 184: 11721.
  • 15
    Guweidhi A, Kleeff J, Adwan H, Giese N, Wente M, Giese T, Büchler M, Berger M, Friess H. Osteonectin influences growth and invasion of pancreatic cancer cells. Ann Surg 2005; 242: 22434.
  • 16
    Prenzel K, Warnecke-Eberz U, Xi H, Brabender J, Baldus S, Bollschweiler E, Gutschow C, Hölscher A, Schneider P. Significant overexpression of SPARC/osteonectin mRNA in pancreatic cancer compared to cancer of the papilla of Vater. Oncol Rep 2006; 15: 1397401.
  • 17
    Infante J, Matsubayashi H, Sato N, Tonascia J, Klein A, Riall T, Yeo C, Iacobuzio-Donahue C, Goggins M. Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol 2007; 25: 31925.
  • 18
    Bloomston M, Ellison E, Muscarella P, Al-Saif O, Martin E, Melvin W, Frankel W. Stromal osteonectin overexpression is associated with poor outcome in patients with ampullary cancer. Ann Surg Oncol 2007; 14: 2117.
  • 19
    Porte H, Chastre E, Prevot S, Nordlinger B, Empereur S, Basset P, Chambon P, Gespach C. Neoplastic progression of human colorectal cancer is associated with overexpression of the stromelysin-3 and BM-40/SPARC genes. Int J Cancer 1995; 64: 705.
  • 20
    Madoz-Gúrpide J, López-Serra P, Martínez-Torrecuadrada J, Sánchez L, Lombardía L, Casal J. Proteomics-based validation of genomic data: applications in colorectal cancer diagnosis. Mol Cell Proteomics 2006; 5: 147183.
  • 21
    Wiese A, Auer J, Lassmann S, Nährig J, Rosenberg R, Höfler H, Rüger R, Werner M. Identification of gene signatures for invasive colorectal tumor cells. Cancer Detect Prev 2007; 31: 28295.
  • 22
    Kaiser S, Park Y, Franklin J, Halberg R, Yu M, Jessen W, Freudenberg J, Chen X, Haigis K, Jegga A, Kong S, Sakthivel B, et al. Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer. Genome Biol 2007; 8: R131.
  • 23
    Ledda F, Bravo A, Adris S, Bover L, Mordoh J, Podhajcer O. The expression of the secreted protein acidic and rich in cysteine (SPARC) is associated with the neoplastic progression of human melanoma. J Invest Dermatol 1997; 108: 2104.
  • 24
    Le Bail B, Faouzi S, Boussarie L, Guirouilh J, Blanc J, Carles J, Bioulac-Sage P, Balabaud C, Rosenbaum J. Osteonectin/SPARC is overexpressed in human hepatocellular carcinoma. J Pathol 1999; 189: 4652.
  • 25
    Menon P, Gutierrez J, Rempel S. A study of SPARC and vitronectin localization and expression in pediatric and adult gliomas: high SPARC secretion correlates with decreased migration on vitronectin. Int J Oncol 2000; 17: 68393.
  • 26
    Thomas R, True L, Bassuk J, Lange P, Vessella R. Differential expression of osteonectin/SPARC during human prostate cancer progression. Clin Cancer Res 2000; 6: 11409.
  • 27
    Yamanaka M, Kanda K, Li N, Fukumori T, Oka N, Kanayama H, Kagawa S. Analysis of the gene expression of SPARC and its prognostic value for bladder cancer. J Urol 2001; 166: 24959.
  • 28
    Iacobuzio-Donahue C, Argani P, Hempen P, Jones J, Kern S. The desmoplastic response to infiltrating breast carcinoma: gene expression at the site of primary invasion and implications for comparisons between tumor types. Cancer Res 2002; 62: 53517.
  • 29
    Yamashita K, Upadhay S, Mimori K, Inoue H, Mori M. Clinical significance of secreted protein acidic and rich in cystein in esophageal carcinoma and its relation to carcinoma progression. Cancer 2003; 97: 24129.
  • 30
    Massi D, Franchi A, Borgognoni L, Reali U, Santucci M. Osteonectin expression correlates with clinical outcome in thin cutaneous malignant melanomas. Hum Pathol 1999; 30: 33944.
  • 31
    Podhajcer O, Benedetti L, Girotti M, Prada F, Salvatierra E, Llera A. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev 2008; 27: 691705.
  • 32
    Clark C, Sage E. A prototypic matricellular protein in the tumor microenvironment—where there's SPARC, there's fire. J Cell Biochem 2008; 104: 72132.
  • 33
    Robert G, Gaggioli C, Bailet O, Chavey C, Abbe P, Aberdam E, Sabatié E, Cano A, Garcia de Herreros A, Ballotti R, Tartare-Deckert S. SPARC represses E-cadherin and induces mesenchymal transition during melanoma development. Cancer Res 2006; 66: 751623.
  • 34
    Alonso S, Tracey L, Ortiz P, Pérez-Gómez B, Palacios J, Pollán M, Linares J, Serrano S, Sáez-Castillo A, Sánchez L, Pajares R, Sánchez-Aguilera A, et al. A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Res 2007; 67: 345060.
  • 35
    Ikuta Y, Hayashida Y, Hirata S, Irie A, Senju S, Kubo T, Nakatsura T, Monji M, Sasaki Y, Baba H, Nishimura Y. Identification of the H2-Kd-restricted cytotoxic T lymphocyte epitopes of a tumor-associated antigen, SPARC, which can stimulate antitumor immunity without causing autoimmune disease in mice. Cancer Sci 2009; 100: 1327.
  • 36
    Nakatsura T, Kageshita T, Ito S, Wakamatsu K, Monji M, Ikuta Y, Senju S, Ono T, Nishimura Y. Identification of glypican-3 as a novel tumor marker for melanoma. Clin Cancer Res 2004; 10: 661221.
  • 37
    Ikuta Y, Nakatsura T, Kageshita T, Fukushima S, Ito S, Wakamatsu K, Baba H, Nishimura Y. Highly sensitive detection of melanoma at an early stage based on the increased serum secreted protein acidic and rich in cysteine and glypican-3 levels. Clin Cancer Res 2005; 11: 807988.
  • 38
    Tahara-Hanaoka S, Sudo K, Ema H, Miyoshi H, Nakauchi H. Lentiviral vector-mediated transduction of murine CD34(−) hematopoietic stem cells. Exp Hematol 2002; 30: 117.
  • 39
    Nakatsura T, Yoshitake Y, Senju S, Monji M, Komori H, Motomura Y, Hosaka S, Beppu T, Ishiko T, Kamohara H, Ashihara H, Katagiri T, et al. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun 2003; 306: 1625.
  • 40
    Nakatsura T, Senju S, Yamada K, Jotsuka T, Ogawa M, Nishimura Y. Gene cloning of immunogenic antigens overexpressed in pancreatic cancer. Biochem Biophys Res Commun 2001; 281: 93644.
  • 41
    Hirohashi Y, Torigoe T, Maeda A, Nabeta Y, Kamiguchi K, Sato T, Yoda J, Ikeda H, Hirata K, Yamanaka N, Sato N. An HLA-A24-restricted cytotoxic T lymphocyte epitope of a tumor-associated protein, survivin. Clin Cancer Res 2002; 8: 17319.
  • 42
    Inoue M, Senju S, Hirata S, Irie A, Baba H, Nishimura Y. An in vivo model of priming of antigen-specific human CTL by Mo-DC in NOD/Shi-scid IL2rgamma(null) (NOG) mice. Immunol Lett 2009; 126: 6772.
  • 43
    Makita M, Hiraki A, Azuma T, Tsuboi A, Oka Y, Sugiyama H, Fujita S, Tanimoto M, Harada M, Yasukawa M. Antilung cancer effect of WT1-specific cytotoxic T lymphocytes. Clin Cancer Res 2002; 8: 262631.
  • 44
    Karaki S, Kariyone A, Kato N, Kano K, Iwakura Y, Takiguchi M. HLA-B51 transgenic mice as recipients for production of polymorphic HLA-A, B-specific antibodies. Immunogenetics 1993; 37: 13942.
  • 45
    Nakamura T, Furukawa Y, Nakagawa H, Tsunoda T, Ohigashi H, Murata K, Ishikawa O, Ohgaki K, Kashimura N, Miyamoto M, Hirano S, Kondo S, et al. Genome-wide cDNA microarray analysis of gene expression profiles in pancreatic cancers using populations of tumor cells and normal ductal epithelial cells selected for purity by laser microdissection. Oncogene 2004; 23: 2385400.
  • 46
    Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 1965; 64: 3149.
  • 47
    Sakai N, Baba M, Nagasima Y, Kato Y, Hirai K, Kondo K, Kobayashi K, Yoshida M, Kaneko S, Kishida T, Kawakami S, Hosaka M, et al. SPARC expression in primary human renal cell carcinoma: upregulation of SPARC in sarcomatoid renal carcinoma. Hum Pathol 2001; 32: 106470.
  • 48
    Tai I, Dai M, Owen D, Chen L. Genome-wide expression analysis of therapy-resistant tumors reveals SPARC as a novel target for cancer therapy. J Clin Invest 2005; 115: 1492502.
  • 49
    Sato N, Fukushima N, Maehara N, Matsubayashi H, Koopmann J, Su G, Hruban R, Goggins M. SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions. Oncogene 2003; 22: 502130.
  • 50
    Yang E, Kang H, Koh K, Rhee H, Kim N, Kim H. Frequent inactivation of SPARC by promoter hypermethylation in colon cancers. Int J Cancer 2007; 121: 56775.
  • 51
    Lane T, Sage E. The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J 1994; 8: 16373.