• 1
    American Cancer Society. Cancer Facts & Figures 2010 ed., 2010. pamphlet.
  • 2
    Woodward WA, Cristofanilli M. Inflammatory breast cancer. Semin Radiat Oncol 2009; 19: 25665.
  • 3
    Radunsky GS, van Golen KL. The current understanding of the molecular determinants of inflammatory breast cancer metastasis. Clin Exp Metastasis 2006; 66: 61520.
  • 4
    van Golen KL, Wu ZF, Qiao XT, Bao LW, Merajver SD. RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res 2000; 60: 58328.
  • 5
    Wheeler AP, Ridley AJ. Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res 2004; 301: 439.
  • 6
    Hakem A, Sanchez-Sweatman O, You-Ten A, Duncan G, Wakeham A, Khokha R, Mak TW. RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev 2005; 19: 19749.
  • 7
    van Golen KL, Bao L, DiVito MM, Wu Z, Prendergast GC, Merajver SD. Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor. Mol Cancer Ther 2002; 1: 57583.
  • 8
    Korah R, Boots M, Wieder R. Integrin alpha5beta1 promotes survival of growth-arrested breast cancer cells: an in vivo paradigm for breast cancer dormancy in bone marrow. Cancer Res 2004; 64 451422.
  • 9
    Barrios J, Wieder R. Dual FGF-2 and intergrin alpha5beta1 signaling mediate GRAF-induced RhoA inactivation in a model of breast cancer dormancy. Cancer Microenviron 2009; 2: 3347.
  • 10
    Barrios J, Wieder R. FGF-2-induced breast cancer dormancy in an in vitro model is maintained through integrin alpha5beta1 signaling. Am Assoc Cancer Res 2007; 100.
  • 11
    Sequeira L, Dubyk CW, Riesenberger TA, Cooper CR, van Golen KL. Rho GTPases in PC-3 prostate cancer cell morphology, invasion and tumor cell diapadesis. Clin Exp Metastasis 2008; 25: 56979.
  • 12
    Simpson KJ, Dugan AS, Mercurio AM. Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res 2004; 64: 8694701.
  • 13
    Zhang X, Lin M, van Golen KL, Itoh K, Yee D. Multiple signaling pathways are activated during insulin-like growth factor-I (IGF-1) stimulated breast cancer cell migration. Breast Cancer Res Treat 2005; 93: 15968.
  • 14
    Zondag GC, Evers EE, ten Klooster JP, Janssen L, van der Kammen RA, Collard JG. Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol 2000; 149: 77582.
  • 15
    van Golen KL, Bao LW, Pan Q, Miller FR, Wu ZF, Merajver SD. Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer. Clin Exp Metastasis 2002; 19: 30111.
  • 16
    Warnberg F, White D, Anderson E, Knox F, Clarke RB, Morris J, Bundred NJ. Effect of a farnesyl transferase inhibitor (R115777) on ductal carcinoma in situ of the breast in a human xenograft model and on breast and ovarian cancer cell growth in vitro and in vivo. Breast Cancer Res 2006; 8: R21.
  • 17
    Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ, Liu ZY, Costes SV, Cho EH, Lockett S, Khanna C, Chambers AF, et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res 2008; 68: 624150.
  • 18
    Pille JY, Denoyelle C, Varet J, Bertrand JR, Soria J, Opolon P, Lu H, Pritchard LL, Vannier JP, Malvy C, Soria C, Li H. Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo. Mol Ther 2005; 11: 26774.
  • 19
    Pille JY, Li H, Bertand JR, Pritchard LL, Opolon P, Maksimenko A, Lu H, Vannier JP, Soria J, Malvy C, Soria C. Intravenous delivery of anti-RhoA small interferring RNA loaded in nonoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum Mol Genet 2008; 17: 101926.
  • 20
    Chan AY, Coniglio SJ, Chuang YY, Michaelson D, Knaus UG, Philips MR, Symons M. Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene 2005; 24: 78219.
  • 21
    Gibbs JB, Oliff A, Kohl NE. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell 1994; 77: 1758.
  • 22
    Lebowitz PF, Davide JP, Prendergast GC. Evidence that farnesyltransferase inhibitors suppress Ras transformation by interfering with Rho activity. Mol Cell Biol 1995; 15: 661322.
  • 23
    Du W, Lebowitz PF, Prendergast GC. Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol Cell Biol 1999; 19: 183140.
  • 24
    Metzler A. Dormancy and breast cancer. J Surg Oncol 1990; 43: 1818.
  • 25
    Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM, Morris VL, Groom AC, Chambers AF. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 2002; 62: 21628.
  • 26
    Goodison S, Kawai K, Hihara J, Jiang P, Yang M, Urquidi V, Hoffman R, Tarin D. Prolonged dormancy and site-specific growth potenitial of cancer cells spontaneously disseminated from non-metastatic breast cancer tumors as revealed by labeling with green fluorescent proteins. Clin Cancer Res 2003; 9: 380814.
  • 27
    van Golen KL. RhoC GTPase in cancer progression and metastasis. In: van GolenKL, ed. The Rho GTPases in cancered. New York: Springer, 2010. 12334.
  • 28
    Kleer CG, van Golen KL, Zhang Y, Wu ZF, Rubin MA, Merajver SD. Characterization of RhoC expression in benign and malignant breast disease: a potential new marker for small breast carcinomas with metastatic ability. Am J Pathol 2002; 160: 57984.
  • 29
    Kleer CG, Griffith KA, Sabel MS, Gallagher G, van Golen KL, Wu ZF, Merajver SD. RhoC-GTPase is a novel tissue biomarker associated with biologically aggressive carcinomas of the breast. Breast Cancer Res Treat 2005; 93: 10110.
  • 30
    del Peso L, Hernandez-Alcoceba R, Embade N, Carnero A, Esteve P, Paje C, Lacal JC. Rho proteins induce metastatic properties in vivo. Oncogene 1997; 15: 304757.
  • 31
    Fritz G, Just I, Kaina B. Rho GTPases are over-expressed in human tumors. Int J Cancer 1999; 81: 6827.
  • 32
    Burbelo PD, Miyamoto S, Utani A, Brill S, Yamada KM, Hall A, Yamada Y. p190-B, a new member of the Rho GAP family, and Rho are induced to cluster after integrin cross-linking. J Biol Chem 1995; 270: 3091926.
  • 33
    Tatsis N, Lannigan DA, Macara IG. The function of the p190 Rho GTPase-activating protein is controlled by its N-terminal GTP binding domain. J Biol Chem 1998; 273: 346318.
  • 34
    Moorman JP, Luu D, Wickham J, Bobak DA, Hahn CS. A balance of signaling by Rho family small GTPases RhoA, Rac1 and Cdc42 coordinates cytoskeletal morphology but not cell survival. Oncogene 1999; 18: 4757.
  • 35
    Tang Y, Yu J, Field J. Signals from the Ras, Rac, and Rho GTPases converge on the Pak protein kinase in Rat-1 fibroblasts. Mol Cell Biol 1999; 19: 188191.
  • 36
    Lin M, van Golen KL. Rho-regulatory proteins in breast cancer cell motility and invasion. Breast Cancer Res Treat 2004; 84: 4960.
  • 37
    Gewirtz DA. Autophagy, senescence and tumor dormancy in cancer therapy. Autophagy 2009; 12324.
  • 38
    Lock R, Debnath J. Extracellular matrix regulation of autophagy. Curr Opin Cell Biol 2008; 20: 5838.
  • 39
    Lelievre SA. Contributions of extracellular matrix signaling and tissue architecture to nuclear mechanisms and spatial organization of gene expression control. Biochim Biophys Acta 2009; 1790: 92535.
  • 40
    Aguirro Ghiso J, Estrada Y, Liu D, Ossowski L. ERKmapk activity as a determinant of tumor growth and dormancy; regulation by p38sapk. Cancer Res 2003; 63: 168495.
  • 41
    Lin M, DiVito MM, Merajver SD, Boyanapalli M, van Golen KL. Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and caveolin-1. Mol Cancer 2005; 4: 21.
  • 42
    Maloof P, Wang Q, Wang H, Stein D, Denny TN, Yahalom J, Fenig E, Wieder R. Overexpression of basic fibroblast growth factor (FGF-2) downregulates Bcl-2 and promotes apoptosis in MCF-7 human breast cancer cells. Breast Cancer Res Treat 1999; 56: 15367.
  • 43
    Danen EH, Yamada KM. Fibronectin, integrins, and growth control. J Cell Physiol 2001; 189: 113.
  • 44
    Lorin S, Pierron G, Ryan KM, Codogno P, Djavaheri-Mergny M. Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy. Autophagy 2010; 6: 1534.
  • 45
    Zhang Y, Wu Y, Cheng Y, Zhao Z, Tashiro S, Onodera S, Ikejima T. Fas-mediated autophagy requires JNK activation in HeLa cells. Biochem Biophys Res Commun 2008; 377: 120510.
  • 46
    Xie JW, Haslam SZ. Extracellular matrix, Rac1 signaling, and estrogen-induced proliferation in MCF-7 breast cancer cells. Breast Cancer Res Treat 2008; 110: 25768.
  • 47
    Teramoto H, Crespo P, Coso OA, Igishi T, Xu N, Gutkind JS. The small GTP-binding protein rho activates c-Jun N-terminal kinases/stress-activated protein kinases in human kidney 293T cells. Evidence for a Pak-independent signaling pathway. J Biol Chem 1996; 271: 257314.
  • 48
    Yao H, Dashner EJ, van Golen CM, van Golen KL. RhoC GTPase is required for PC-3 prostate cancer cell invasion but not motility. Oncogene 2006; 25: 228596.
  • 49
    Sander EE, ten Klooster JP, van Delft S, van der Kammen RA, Collard JG. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 1999; 147: 100922.
  • 50
    Prendergast GC. Farnesyltransferase inhibitors: antineoplastic mechanism and clinical prospects. Curr Opin Cell Biol 2000; 12: 16673.