• 1
    Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004; 4: 25365.
  • 2
    Wood KW. Past and future of the mitotic spindle as an oncology target. Curr Opin Pharmacol 2001; 1: 3707.
  • 3
    Zhang LH, Wu L, Raymon HK, Chen RS, Corral L, Shirley MA, Narla RK, Gamez J, Muller GW, Stirling DI, Bartlett JB, Schafer PH, et al. The synthetic compound CC-5079 is a potent inhibitor of tubulin polymerization and tumor necrosis factor-alpha production with antitumor activity. Cancer Res 2006; 66: 9519.
  • 4
    Wang G, Shang L, Burgett AW, Harran PG, Wang X. Diazonamide toxins reveal an unexpected function for ornithine delta-amino transferase in mitotic cell division. Proc Natl Acad Sci U S A 2007; 104: 206873.
  • 5
    Meng T, Zhang Z, Hu D, Lin L, Ding J, Wang X, Shen J. Three-component combinatorial synthesis of a substituted 6H-pyrido[2',1':2,3]imidazo- [4,5-c]isoquinolin-5(6H)-one library with cytotoxic activity. J Comb Chem 2007; 9: 73941.
  • 6
    Zhang Z, Meng T, He J, Li M, Tong LJ, Xiong B, Lin L, Shen J, Miao ZH, Ding J. MT7, a novel compound from a combinatorial library, arrests mitosis via inhibiting the polymerization of microtubules. Invest New Drugs 2009 (in press).
  • 7
    Harker WG, Slade DL, Dalton WS, Meltzer PS, Trent JM. Multidrug resistance in mitoxantrone-selected HL-60 leukemia cells in the absence of P-glycoprotein overexpression. Cancer Res 1989; 49: 45429.
  • 8
    Zhu H, Huang M, Yang F, Chen Y, Miao ZH, Qian XH, Xu YF, Qin YX, Luo HB, Shen X, Geng MY, Cai YJ, et al. R16, a novel amonafide analogue, induces apoptosis and G2-M arrest via poisoning topoisomerase II. Mol Cancer Ther 2007; 6: 48495.
  • 9
    Miao ZH, Tang T, Zhang YX, Zhang JS, Ding J. Cytotoxicity, apoptosis induction and downregulation of MDR-1 expression by the anti-topoisomerase II agent, salvicine, in multidrug-resistant tumor cells. Int J Cancer 2003; 106: 10815.
  • 10
    Huang M, Gao H, Chen Y, Zhu H, Cai Y, Zhang X, Miao Z, Jiang H, Zhang J, Shen H, Lin L, Lu W, et al. Chimmitecan, a novel 9-substituted camptothecin, with improved anticancer pharmacologic profiles in vitro and in vivo. Clin Cancer Res 2007; 13: 1298307.
  • 11
    Shelanski ML, Gaskin F, Cantor CR. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A 1973; 70: 7658.
  • 12
    Zhuang SH, Hung YE, Hung L, Robey RW, Sackett DL, Linehan WM, Bates SE, Fojo T, Poruchynsky MS. Evidence for microtubule target engagement in tumors of patients receiving ixabepilone. Clin Cancer Res 2007; 13: 74806.
  • 13
    Bravman T, Bronner V, Lavie K, Notcovich A, Papalia GA, Myszka DG. Exploring “one-shot” kinetics and small molecule analysis using the ProteOn XPR36 array biosensor. Anal Biochem 2006; 358: 2818.
  • 14
    Borisy GG. A rapid method for quantitative determination of microtubule protein using DEAE-cellulose filters. Anal Biochem 1972; 50: 37385.
  • 15
    Ravelli RBG, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004; 428: 198202.
  • 16
    Garrett M. Morris DSG, Robert S. Halliday, Ruth Huey, William E. Hart, Richard K. Belew, Arthur J. Olson,. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998; 19: 163962.
  • 17
    Ruth Huey GMM, Olson AJ, Goodsell DS. A semiempirical free energy force field with charge-based desolvation. J Comput Chem 2007; 28: 114552.
  • 18
    Xie H, Qin YX, Zhou YL, Tong LJ, Lin LP, Geng MY, Duan WH, Ding J. GA3, a new gambogic acid derivative, exhibits potent antitumor activities in vitro via apoptosis-involved mechanisms. Acta Pharmacol Sin 2009; 30: 34654.
  • 19
    Qing C, Miao ZH, Tong LJ, Zhang JS, Ding J. Actinomycin D inhibiting K562 cell apoptosis elicited by salvicine but not decreasing its cytotoxicity. Acta Pharmacol Sin 2003; 24: 41521.
  • 20
    Meng LH, He XX, Zhang JS, Ding J. DNA topoisomerase II as the primary cellular target for salvicine in Saccharomyces cerevisiae. Acta Pharmacol Sin 2001; 22: 7416.
  • 21
    Bravman T, Bronner V, Lavie K, Notcovich A, Papalia GA, Myszka DG. Exploring “one-shot” kinetics and small molecule analysis using the ProteOn XPR36 array biosensor. Anal Biochem 2006; 358: 2818.
  • 22
    Kalie E, Jaitin DA, Podoplelova Y, Piehler J, Schreiber G. The stability of the ternary interferon-receptor complex rather than the affinity to the individual subunits dictates differential biological activities. J Biol Chem 2008; 283: 3292536.
  • 23
    Tenhumberg S, Waetzig GH, Chalaris A, Rabe B, Seegert D, Scheller J, Rose-John S, Grotzinger J. Structure-guided optimization of the interleukin-6 trans-signaling antagonist sgp130. J Biol Chem 2008; 283: 272007.
  • 24
    Tong YG, Zhang XW, Geng MY, Yue JM, Xin XL, Tian F, Shen X, Tong LJ, Li MH, Zhang C, Li WH, Lin LP, et al. Pseudolarix acid B, a new tubulin-binding agent, inhibits angiogenesis by interacting with a novel binding site on tubulin. Mol Pharmacol 2006; 69: 122633.
  • 25
    Banerjee M, Poddar A, Mitra G, Surolia A, Owa T, Bhattacharyya B. Sulfonamide drugs binding to the colchicine site of tubulin: thermodynamic analysis of the drug-tubulin interactions by isothermal titration calorimetry. J Med Chem 2005; 48: 54755.
  • 26
    Gupta S, Chakraborty S, Poddar A, Sarkar N, Das KP, Bhattacharyya B. BisANS binding to tubulin: isothermal titration calorimetry and the site-specific proteolysis reveal the GTP-induced structural stability of tubulin. Proteins 2003; 50: 2839.
  • 27
    Mellon MG, Rebhun LI. Sulfhydryls and the in vitro polymerization of tubulin. J Cell Biol 1976; 70: 22638.
  • 28
    Roychowdhury M, Sarkar N, Manna T, Bhattacharyya S, Sarkar T, Basusarkar P, Roy S, Bhattacharyya B. Sulfhydryls of tubulin. A probe to detect conformational changes of tubulin. Eur J Biochem 2000; 267: 346976.
  • 29
    Britto PJ, Knipling L, McPhie P, Wolff J. Thiol-disulphide interchange in tubulin: kinetics and the effect on polymerization. Biochem J 2005; 389: 54958.
  • 30
    Mooberry SL, Weiderhold KN, Dakshanamurthy S, Hamel E, Banner EJ, Kharlamova A, Hempel J, Gupton JT, Brown ML. Identification and characterization of a new tubulin-binding tetrasubstituted brominated pyrrole. Mol Pharmacol 2007; 72: 13240.
  • 31
    Smith CD, Zhang X. Mechanism of action cryptophycin. Interaction with the Vinca alkaloid domain of tubulin. J Biol Chem 1996; 271: 61928.
  • 32
    Zhang X, Smith C. Microtubule effects of welwistatin, a cyanobacterial indolinone that circumvents multiple drug resistance. Mol Pharmacol 1996; 49: 28894.
  • 33
    Nguyen TL, McGrath C, Hermone AR, Burnett JC, Zaharevitz DW, Day BW, Wipf P, Hamel E, Gussio R. A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. J Med Chem 2005; 48: 610716.
  • 34
    Xiao D, Deguchi A, Gundersen GG, Oehlen B, Arnold L, Weinstein IB. The sulindac derivatives OSI-461, OSIP486823, and OSIP487703 arrest colon cancer cells in mitosis by causing microtubule depolymerization. Mol Cancer Ther 2006; 5: 607.
  • 35
    Boy O, Brossi A, Arnold B, Geoffrey AC. Chapter 3 Tropolonic colchicum alkaloids and allo congeners the alkaloids: chemistry and pharmacologyed, vol. 41. Academic Press, 1992. 12576.
  • 36
    Zhou J, Yao J, Joshi HC. Attachment and tension in the spindle assembly checkpoint. J Cell Sci 2002; 115: 354755.
  • 37
    Wittmann T, Hyman A, Desai A. The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 2001; 3: E2834.
  • 38
    Mayer TU. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 1999; 286: 9714.
  • 39
    Rieder CL, Maiato H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 2004; 7: 63751.
  • 40
    Kadura S, Sazer S. SAC-ing mitotic errors: how the spindle assembly checkpoint (SAC) plays defense against chromosome mis-segregation. Cell Motil Cytoskeleton 2005; 61: 14560.
  • 41
    Olmsted JB, Borisy GG. Characterization of microtubule assembly in porcine brain extracts by viscometry. Biochemistry 1973; 12: 42829.
  • 42
    Sternlicht H, Ringel I. Colchicine inhibition of microtubule assembly via copolymer formation. J Biol Chem 1979; 254: 1054050.
  • 43
    Margolis RL, Wilson L. Addition of colchicine—tubulin complex to microtubule ends: the mechanism of substoichiometric colchicine poisoning. Proc Natl Acad Sci USA 1977; 74: 346670.
  • 44
    Risinger AL, Giles FJ, Mooberry SL. Microtubule dynamics as a target in oncology. Cancer Treat Rev 2009; 35: 25561.
  • 45
    Kerfant BG, Vassort G, Gomez AM. Microtubule disruption by colchicine reversibly enhances calcium signaling in intact rat cardiac myocytes. Circ Res 2001; 88: E5965.
  • 46
    Beerepoot LV, Radema SA, Witteveen EO, Thomas T, Wheeler C, Kempin S, Voest EE. Phase I clinical evaluation of weekly administration of the novel vascular-targeting agent, ZD6126, in patients with solid tumors. J Clin Oncol 2006; 24: 14918.
  • 47
    LoRusso PM, Gadgeel SM, Wozniak A, Barge AJ, Jones HK, DelProposto ZS, DeLuca PA, Evelhoch JL, Boerner SA, Wheeler C. Phase I clinical evaluation of ZD6126, a novel vascular-targeting agent, in patients with solid tumors. Invest New Drugs 2008; 26: 15967.
  • 48
    Fox E, Maris JM, Widemann BC, Meek K, Goodwin A, Goodspeed W, Kromplewski M, Fouts ME, Medina D, Cho SY, Cohn SL, Krivoshik A, et al. A phase 1 study of ABT-751, an orally bioavailable tubulin inhibitor, administered daily for 7 days every 21 days in pediatric patients with solid tumors. Clin Cancer Res 2006; 12: 48827.
  • 49
    Rustin GJ, Galbraith SM, Anderson H, Stratford M, Folkes LK, Sena L, Gumbrell L, Price PM. Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results. J Clin Oncol 2003; 21: 281522.
  • 50
    Stevenson JP, Rosen M, Sun W, Gallagher M, Haller DG, Vaughn D, Giantonio B, Zimmer R, Petros WP, Stratford M, Chaplin D, Young SL, et al. Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. J Clin Oncol 2003; 21: 442838.