• 1
    zur Hausen H. Papillomaviruses in the causation of human cancers-a brief historical account. Virology 2009; 384: 2605.
  • 2
    Kols A, Sherris J, Herdman C, Wittet S. Current and Future HPV Vaccines: Promise and Challenges. Seattle: PATH, 2006. 72 p.
  • 3
    Leggatt GR, Frazer IH. HPV vaccines: the beginning of the end for cervical cancer. Curr Opin Immunol 2007; 19: 2328.
  • 4
    Frazer I. Vaccines for papillomavirus infection. Virus Res 2002; 89: 2714.
  • 5
    Howley PM, Lowy DR. Papillomaviruses and their replication. In: Knipe DM, Howley PM, eds. Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins, 2001. 2197229.
  • 6
    Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 1989; 63: 441721.
  • 7
    Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63: 112936.
  • 8
    Munger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J 1989; 8: 4099105.
  • 9
    Boyer SN, Wazer DE, Band V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 1996; 56: 46204.
  • 10
    Stanley M. Immune responses to human papillomavirus. Vaccine 2006; 24 Suppl 1: S1622.
  • 11
    Alonso LG, Garcia-Alai MM, Nadra AD, Lapeña AN, Almeida FL, Gualfetti P, Prat-Gay GD. High-risk (HPV16) human papillomavirus E7 oncoprotein is highly stable and extended, with conformational transitions that could explain its multiple cellular binding partners. Biochemistry 2002; 41: 105108.
  • 12
    Garcia-Alai MM, Alonso LG, de Prat-Gay G. The N-terminal module of HPV16 E7 is an intrinsically disordered domain that confers conformational and recognition plasticity to the oncoprotein. Biochemistry 2007; 46: 1040512.
  • 13
    Uversky VN, Roman A, Oldfield CJ, Dunker AK. Protein intrinsic disorder and human papillomaviruses: increased amount of disorder in E6 and E7 oncoproteins from high risk HPVs. J Proteome Res 2006; 5: 182942.
  • 14
    Liu X, Clements A, Zhao K, Marmorstein R. Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor. J Biol Chem 2006; 281: 57886.
  • 15
    Ohlenschlager O, Seiboth T, Zengerling H, Briese L, Marchanka A, Ramachandran R, Baum M, Korbas M, Meyer-Klaucke W, Durst M, Gorlach M. Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7. Oncogene 2006; 25: 59539.
  • 16
    Alonso LG, Garcia-Alai MM, Smal C, Centeno JM, Iacono R, Castaño E, Gualfetti P, de Prat-Gay G. The HPV16 E7 viral oncoprotein self-assembles into defined spherical oligomers. Biochemistry 2004; 43: 33107.
  • 17
    Alonso LG, Smal C, Garcia-Alai MM, Chemes L, Salame M, de Prat-Gay G. Chaperone holdase activity of human papillomavirus E7 oncoprotein. Biochemistry 2006; 45: 65767.
  • 18
    Dantur K, Alonso L, Castano E, Morelli L, Centeno-Crowley JM, Vighi S, de Prat-Gay G. Cytosolic accumulation of HPV16 E7 oligomers supports different transformation routes for the prototypic viral oncoprotein: the amyloid-cancer connection. Int J Cancer 2009; 125: 190211.
  • 19
    Cid-Arregui A. Therapeutic vaccines against human papillomavirus and cervical cancer. Open Virol J 2009; 3: 6783.
  • 20
    Hung CF, Ma B, Monie A, Tsen SW, Wu TC. Therapeutic human papillomavirus vaccines: current clinical trials and future directions. Expert Opin Biol Ther 2008; 8: 42139.
  • 21
    Hsieng SL, Clogston CL, Merewether LA, Narhi LO, Boone TC. Role of disulfide bonds in folding of recombinant human granulocyte colony stimulating factor produced in Escherichia coli. In: Cleland JL, ed. Protein Folding: In Vivo and In Vitro, vol. 526. 1993. 189202.
  • 22
    Baldrige JR, Crane RT. Monophosphoryl Lipid A (MPL) formulations for the next generation of vaccines. Methods 1999; 19: 1037.
  • 23
    Hartmann G, Weeratna RD, Ballas ZK, Payette P, Blackwell S, Suparto I, Rasmussen WL, Waldschmidt M, Sajuthi D, Purcell RH, Davis HL, Krieg AM. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol 2000; 164: 161724.
  • 24
    Lin KY, Guarnieri FG, Staveley-O'Carroll KF, Levitsky HI, August JT, Pardoll DM, Wu TC. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res 1996; 56: 216.
  • 25
    Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 2010; 10: 78796.
  • 26
    Klinman DM. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 2004; 4: 24958.
  • 27
    Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci U S A 1996; 93: 287983.
  • 28
    Krieg AM, Love-Homan L, Yi AK, Harty JT. CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol 1998; 161: 242834.
  • 29
    Weiner GJ, Liu HM, Wooldridge JE, Dahle CE, Krieg AM. Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc Natl Acad Sci U S A 1997; 94: 108337.
  • 30
    Zimmermann S, Egeter O, Hausmann S, Lipford GB, Rocken M, Wagner H, Heeg K. CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J Immunol 1998; 160: 362730.
  • 31
    Kim TY, Myoung HJ, Kim JH, Moon IS, Kim TG, Ahn WS, Sin JI. Both E7 and CpG-oligodeoxynucleotide are required for protective immunity against challenge with human papillomavirus 16 (E6/E7) immortalized tumor cells: involvement of CD4+ and CD8+ T cells in protection. Cancer Res 2002; 62: 723440.
  • 32
    Welters MJ, Filippov DV, van den Eeden SJ, Franken KL, Nouta J, Valentijn AR, van der Marel GA, Overkleeft HS, Lipford G, Offringa R, Melief CJ, van Boom JH, et al. Chemically synthesized protein as tumour-specific vaccine: immunogenicity and efficacy of synthetic HPV16 E7 in the TC-1 mouse tumour model. Vaccine 2004; 23: 30511.
  • 33
    Zwaveling S, Ferreira Mota SC, Nouta J, Johnson M, Lipford GB, Offringa R, van der Burg SH, Melief CJ. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol 2002; 169: 3508.
  • 34
    Kaufmann SH. Heat shock proteins and the immune response. Immunol Today 1990; 11: 12936.
  • 35
    Young DB, Ivanyi J, Cox JH, Lam JR. The 65 kDa antigen of mycobacteria-a common bacterial protein? Immunol Today 1987; 8: 2159.
  • 36
    Mizzen L, Neefe J. Heat shock protein fusions: a platform for the induction of antigen-specific immunity. In: Henderson B, Pockley AG, eds. Molecular chaperones and cell signalling. New York: Cambridge University Press, 2005. 28899.
  • 37
    Goldstone SE, Palefsky JM, Winnett MT, Neefe JR. Activity of HspE7, a novel immunotherapy, in patients with anogenital warts. Dis Colon Rectum 2002; 45: 5027.
  • 38
    Banerjee PP, Li Z. Molecular chaperones as inducers of tumour immunity. In: Henderson B, Pockley AG, eds. Molecular chaperones and cell signalling. New York: Cambridge University Press, 2005. 30017.
  • 39
    Ebbert GB, Mascolo ED. Vaccine manufacturing. In: Plotkin SA, Orenstein WA, eds. Vaccines, 4th edn. Philadelphia: Elsevier Inc., 2004. 5367.