SEARCH

SEARCH BY CITATION

References

  • 1
    Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet 2009; 25: 308.
  • 2
    Plzák J, Lacina L, Chovanec M, Dvořánková B, Szabo P, Čada Z, Smetana K, Jr. Epithelial–stromal interaction in squamous cell epithelium-derived tumors: an important new player in the control of tumor biological properties. Anticancer Res 2010; 30: 45562.
  • 3
    Josson S, Sharp S, Sung SY, Johnstone PA, Aneja R, Wang R, Gururajan M, Turner T, Chung LW, Yates C. Tumor-stromal interactions influence radiation sensitivity in epithelial- versus mesenchymal-like prostate cancer cells. J Oncol, 2010;Article ID 232831, 10 pages (doi:10.1155/2010/232831).
  • 4
    Franco OE, Shaw AK, Strand DW, Hayward SW. Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 2010; 21: 339.
  • 5
    De Wever O, Demetter P, Mareel M, Bradle M. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 2008; 123: 222938.
  • 6
    Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem sells. Cancer Res 2008; 68: 43319.
  • 7
    Lacina L, Dvořánková B, Smetana K, Jr., Chovanec M, Plzák J, Tachezy R, Kideryová L, Kučerová L, Čada Z, Bouček J, Kodet R, André S, et al. Marker profiling of normal keratinocytes identifies the stroma from squamous cell carcinoma of the oral cavity as a modulatory microenvironment in co-culture. Int J Radiat Biol 2007; 83: 83748.
  • 8
    Lacina L, Smetana K, Jr., Dvořánková B, Pytlík R, Kideryová L, Kučerová L, Plzáková Z, Štork J, Gabius H-J, André S. Stromal fibroblasts from basal cell carcinoma affect phenotype of normal keratinocytes. Br J Dermatol 2007; 156: 81929.
  • 9
    Strnad H, Lacina L, Kolář M, Čada Z, Vlček Č, Dvořánková B, Betka J, Plzák J, Chovanec M, Šáchová J, Valach J, Urbanová M, et al. Head and neck squamous cancer fibroblasts produce growth factors influencing phenotype of normal human keratinocytes. Histochem Cell Biol 2010; 133: 20111.
  • 10
    Kaltner H, Gabius H-J. A toolbox of lectins for translating the sugar code: the galectin network in phylogenesis and tumors. Histol Histopathol 2012; 27: 397416.
  • 11
    Čada Z, Smetana K, Jr., Lacina L, Plzáková Z, Štork J, Kaltner H, Russwurm R, Lensch M, André S, Gabius H-J. Immunohistochemical fingerprinting of the network of seven adhesion/growth-regulatory lectins in human skin and detection of distinct tumour-associated alterations. Folia Biol (Praha) 2009; 55: 14552.
  • 12
    Saussez S, de Leval L, Decaestecker C, Sirtaine N, Cludts S, Duray A, Chevalier D, André S, Gabius H-J, Remmelink M, Leroy X. Galectin fingerprinting in Warthin's tumors: lectin-based approach to trace its origin? Histol Histopathol 2010; 25: 54150.
  • 13
    Remmelink M, de Leval L, Decaestecker C, Duray A, Crompot E, Sirtaine N, André S, Kaltner H, Leroy X, Gabius H-J, Saussez S. Quantitative immunohistochemical fingerprinting of adhesion/growth-regulatory galectins in salivary gland tumours: divergent profiles with diagnostic potential. Histopathology 2011; 58: 54356.
  • 14
    Klíma J, Lacina L, Dvořánková B, Herrmann D, Carnwath JW, Niemann H, Kaltner H, André S, Motlík J, Gabius H-J, Smetana K, Jr. Differential regulation of galectin expression/reactivity during wound healing in porcine skin and in cultures of epidermal cells with functional impact on migration. Physiol Res 2009; 58: 87384.
  • 15
    Saussez S, Decaestecker C, Cludts S, Ernoux P, Chevalier D, Smetana K, Jr., André S, Leroy X, Gabius H-J. Adhesion/growth-regulatory tissue lectin galectin-1 in relation to angiogenesis/lymphocyte infiltration and prognostic relevance of stromal up-regulation in laryngeal carcinomas. Anticancer Res 2009; 29: 5966.
  • 16
    Wu M-H, Hong H-C, Hong T-M, Chiang W-F, Jin Y-T, Chen Y-L. Targeting galectin-1 in carcinoma-associated fibroblasts inhibits oral squamous cell carcinoma metastasis by downregulating MCP-1/CCL2 expression. Clin Cancer Res 2011; 17: 130816.
  • 17
    Roda O, Ortiz-Zapater E, Martínez-Bosch N, Guitiérrez-Gallego R, Villa-Perelló M, Ampurdanés C, Gabius H-J, André S, Andreu D, Real FX, Navarro P. Galectin-1 is a novel functional receptor for tissue plasminogen activator in pancreatic cancer. Gastroenterology 2009; 136: 137990.
  • 18
    Wang J, Lu Z-H, Gabius H-J, Rohowsky-Kochan C, Ledeen RW, Wu G. Crosslinking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J Immunol 2009; 182: 403645.
  • 19
    Wu G, Lu Z-H, Gabius H-J, Ledeen RW, Bleich D. Ganglioside GM1 deficiency in effector T cells from NOD mice induces resistance to regulatory T-cell supression. Diabetes 2011; 60: 23419.
  • 20
    Thijssen VLJL, Postel R, Brandwijk RJMGE, Dings RPM, Nesmelova I, Satijn S, Verhofstad N, Nakabeppu Y, Baum LG, Bakkers J, Mayo KH, Poirier F, et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci USA 2006; 103: 1597580.
  • 21
    André S, Sanchez-Ruderisch H, Nakagawa H, Buchholz M, Kopitz J, Forberich P, Kemmner W, Böck C, Deguchi K, Detjen KM, Wiedenmann B, von Knebel Doeberitz M, et al. Tumor suppressor p16INK4a: modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells. FEBS J 2007; 274: 323356.
  • 22
    Saussez S, Decaestecker C, Lorfevre F, Cucu D-R, Mortuaire G, Chevalier D, Wacreniez A, Kaltner H, André S, Toubeau G, Camby I, Gabius H-J, et al. High level of galectin-1 expression is a negative prognostic predictor of recurrence in laryngeal squamous cell carcinomas. Int J Oncol 2007; 30: 110917.
  • 23
    Gillenwater A, Xu X-C, El-Naggar AK, Clayman GL, Lotan R. Expression of galectins in head and neck squamous cell carcinoma. Head Neck 1996; 18: 42232.
  • 24
    Kopitz J, von Reitzenstein C, André S, Kaltner H, Uhl J, Ehemann V, Cantz M, Gabius H-J. Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J Biol Chem 2001; 276: 3591723.
  • 25
    Sanchez-Ruderisch H, Fischer C, Detjen KM, Welzel M, Wimmel A, Manning JC, André S, Gabius H-J. Tumor suppressor p16INK4a: downregulation of galectin-3, an endogenous competitor of the pro-anoikis effector galectin-1, in a pancreatic carcinoma model. FEBS J 2010; 277: 355263.
  • 26
    Smetana K, Jr., Dvořánková B, Chovanec M, Bouček J, Klíma J, Motlík J, Lensch M, Kaltner H, André S, Gabius H-J. Nuclear presence of adhesion-/growth-regulatory galectins in normal/malignant cells of squamous epithelial origin. Histochem Cell Biol 2006; 125: 17182.
  • 27
    Saussez S, Decaestecker C, Mahillon V, Cludts S, Capouillez A, Chevalier D, Kaltner H, André S, Toubeau G, Leroy X, Gabius H-J. Galectin-3 upregulation during tumor progression in head and neck cancer. Laryngoscope 2008; 118: 158390.
  • 28
    Choufani G, Nagy N, Saussez S, Marchant H, Bisschop P, Burchert M, Danguy A, Louryan S, Salmon I, Gabius H-J, Kiss R, Hassid S. The levels of expression of galectin-1, galectin-3, and the Thomsen–Friedenreich antigen and their binding sites decrease as clinical aggressiveness increases in head and neck cancers. Cancer 1999; 86: 235363.
  • 29
    Rotnáglová E, Tachezy R, Saláková M, Procházka B, Košl'abová E, Veselá E, Ludvíková V, Hamšíková E, Klozar J. HPV involvement in tonsillar cancer: prognostic significance and clinically relevant markers. Int J Cancer 2011; 129: 10110.
  • 30
    Kaltner H, Seyrek K, Heck A, Sinowatz F, Gabius H-J. Galectin-1 and galectin-3 in fetal development of bovine respiratory and digestive tracts. Comparison of cell type specific expression profiles and subcellular localization. Cell Tissue Res 2002; 307: 3546.
  • 31
    Lohr M, Lensch M, André S, Kaltner H, Siebert HC, Smetana K, Jr., Sinowatz F, Gabius H-J. Murine homodimeric adhesion/growth-regulatory galectins-1, -2 and -7: comparative profiling of gene/promoter sequences by database mining, of expression by RT-PCR/immunohistochemistry and of contact sites for carbohydrate ligands by computational chemistry. Folia Biol (Praha) 2007; 53: 10928.
  • 32
    Szabo P, Kolář M, Dvořánková B, Lacina L, Štork J, Vlček Č, Strnad H, Tvrdek M, Smetana K, Jr. Mouse 3T3 fibroblasts under the influence of fibroblasts isolated from stroma of human basal cell carcinoma acquire properties of multipotent stem cells. Biol Cell 2011; 103: 23348.
  • 33
    Storey JD. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat 2003; 31: 201335.
  • 34
    Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392401.
  • 35
    Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004; 101: 60627.
  • 36
    Grinnell F. Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 1994; 124: 4014.
  • 37
    Dvořánková B, Szabo P, Lacina L, Gal P, Uhrová J, Zíma T, Kaltner H, André S, Gabius H-J, Syková E, Smetana K, Jr. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: potential application in tissue engineering and wound repair. Cells Tissues Organs 2011;194:46980.
  • 38
    Chung CH, Parker JS, Ely K, Carter J, Yi Y, Murphy BA, Kian Ang K, El-Naggar AK, Zanation AM, Cmelak AJ, Levy S, Slebos RJ, et al. Experimental therapeutics, molecular targets, and chemical biology: gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-κB signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res 2006; 66: 82108.
  • 39
    Shin C, Feng Y, Manley JL. Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature 2004; 427: 5538.
  • 40
    Benzinger A, Muster N, Koch HB, Yates JR, Hermeking H. Targeted proteomic analysis of 14–3-3*, a p53 effector commonly silenced in cancer. Mol Cell Proteomics 2005; 4: 78595.
  • 41
    Shi Y, Manley JL. A complex signaling pathway regulates SRp38 phosphorylation and pre-mRNA splicing in response to heat shock. Mol Cell 2007; 28: 7990.
  • 42
    Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge C, Haase J, Janes J, Huss J, Su A. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 2009; 10: R130.
  • 43
    Arimoto K, Funami K, Saeki Y, Tanaka K, Okawa K, Takeuchi O Akira S, Murakami Y, Shimotohno K. Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense. Proc Natl Acad Sci USA 2010; 107: 1585661.
  • 44
    Sun W, Wei X, Kesavan K, Garrington TP, Fan R, Mei J, Anderson SM, Gelfand EW, Johnson GL. MEK kinase 2 and the adaptor protein Lad regulate extracellular signal-regulated kinase 5 activation by epidermal growth factor via Src. Mol Cell Biol 2003; 23: 2298308.
  • 45
    Fenner BJ, Scannell M, Prehn JHM. Expanding the substantial interactome of NEMO using protein microarrays. PLoS One 2010; 5: e8799.
  • 46
    Bandyopadhyay S, Chiang C-Y, Srivastava J, Gersten M, White S, Bell R, Kurschner C, Martin CH, Smoot M, Sahasrabudhe S, Barber DL, Chanda SK, et al. A human MAP kinase interactome. Nat Methods 2010; 7: 8015.
  • 47
    Yoon JC, Ng A, Kim BH, Bianco A, Xavier RJ, Elledge SJ. Wnt signaling regulates mitochondrial physiology and insulin sensitivity. Genes Dev 2010; 24: 150718.
  • 48
    Courilleau D, Chastre E, Sabbah M, Redeuilh G, Atfi A, Mester J. B-ind1, a novel mediator of Rac1 signaling cloned from sodium butyrate-treated fibroblasts. J Biol Chem 2000; 275: 173448.
  • 49
    Behrends C, Sowa M, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature 2010; 466: 6876.
  • 50
    Haitina T, Lindblom J, Renström T, Fredriksson R. Fourteen novel human members of mitochondrial solute carrier family 25 (SLC25) widely expressed in the central nervous system. Genomics 2006; 88: 77990.
  • 51
    Yuan H, Zhang P, Qin L, Chen L, Shi S, Lu Y, Yan F, Bai C, Nan X, Liu D, Li Y, Yue W, et al. Overexpression of SPINDLIN1 induces cellular senescence, multinucleation and apoptosis. Gene 2008; 410: 6774.
  • 52
    Dvorak HF. Tumours: wounds that do not heal. N Engl J Med 1986; 315: 16509.