SEARCH

SEARCH BY CITATION

References

  • 1
    Siegel R, Naishadham D, Jemal A. Cancer statistics 2012. CA Caner J Clin 2012; 62: 1029.
  • 2
    International Agency for Research on Cancer. tobacco smoke and involuntary smoking. IARC monographs on the evaluation of carcinogenic risks to humans, vol. 83. Lyon, France: IARC, 2004. 331187.
  • 3
    Shafey, O, Eriksen, MP, Ross, H, et al. The tobacco atlas,3rd edn. Atlanta, GA: American Cancer Society and World Lung Foundation, 2009. 19 p.
  • 4
    Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 1999; 91: 1194210.
  • 5
    Rodgman A, Perfetti T, The chemical components of tobacco and tobacco smoke. Boca Raton, FL: CRC Press, 2009. 1483784.
  • 6
    Hecht SS. Research opportunities related to establishing standards for tobacco products under the family smoking prevention and tobacco control act. Nicotine Tob Res 2012; 14: 1828.
  • 7
    Ding L, Getz G, Wheeler DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455: 106975.
  • 8
    Pleasance ED, Stephens PJ, O'Meara S, et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 2010; 463: 18490.
  • 9
    Lee W, Jiang Z, Liu J, et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 2010; 465: 4737.
  • 10
    Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446: 1538.
  • 11
    Chen RJ, Chang LW, Lin P, et al. Epigenetic effects and molecular mechanisms of tumorigenesis induced by cigarette smoke: an overview. J Oncol 2011; 2011: 654931.
  • 12
    Takahashi H, Ogata H, Nishigaki R, et al. Tobacco smoke promotes lung tumorigenesis by triggering IKKβ- and JNK1-dependent inflammation. Cancer Cell 2010; 17: 8997.
  • 13
    Murphy SE, von Weymarn LB, Schutten MM, et al. Chronic nicotine consumption does not influence 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis. Cancer Prev Res (Phila) 2011; 4: 175260.
  • 14
    Maier CR, Hollander MC, Hobbs EA, et al. Nicotine does not enhance tumorigenesis in mutant K-ras-driven mouse models of lung cancer. Cancer Prev Res (Phila) 2011; 4: 174351.
  • 15
    Stoner GD, Shimkin MB. Strain A mouse lung tumor bioassay. J Amer Coll Toxicol 1982; 1: 14569.
  • 16
    Thorgeirsson TE, Geller F, Sulem P, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 2008; 452: 63842.
  • 17
    Amos CI, Wu X, Broderick P, et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 2008; 40: 61622.
  • 18
    Hung RJ, McKay JD, Gaborieau V, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008; 452: 6337.
  • 19
    Saccone SF, Hinrichs AL, Saccone NL, et al. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 2007; 16: 3649.
  • 20
    Saccone NL, Wang JC, Breslau N, et al. The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer Res 2009; 69: 684856.
  • 21
    Saccone NL, Culverhouse RC, Schwantes-An TH, et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet 2010; 6: e1001053.
  • 22
    Ware JJ, van den Bree MB, Munafo MR. Association of the CHRNA5-A3-B4 gene cluster with heaviness of smoking: a meta-analysis. Nicotine Tob Res 2011; 13: 116775.
  • 23
    Timofeeva MN, McKay JD, Smith GD, et al. Genetic polymorphisms in 15q25 and 19q13 loci, cotinine levels, and risk of lung cancer in EPIC. Cancer Epidemiol Biomarkers Prev 2011; 20: 225061.
  • 24
    Wang Y, Broderick P, Matakidou A, et al. Chromosome 15q25 (CHRNA3-CHRNA5) variation impacts indirectly on lung cancer risk. PLoS One 2011; 6: e19085.
  • 25
    Wassenaar CA, Dong Q, Wei Q, et al. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J Natl Cancer Inst 2011; 103: 13426.
  • 26
    Le Marchand L, Derby KS, Murphy SE, et al. Smokers with the CHRNA lung cancer-associated variants are exposed to higher levels of nicotine equivalents and a carcinogenic tobacco-specific nitrosamine. Cancer Res 2008; 68: 913740.
  • 27
    Hecht SS. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol 1998; 11: 559603.
  • 28
    Yuan J-M, Gao Y-T, Murphy SE, et al. Urinary levels of cigarette smoke constituent metabolites are prospectively associated with lung cancer development in smokers. Cancer Res 2011; 71: 674957.
  • 29
    Yuan JM, Gao YT, Wang R, et al. Urinary levels of volatile organic carcinogen and toxicant biomarkers in relation to lung cancer development in smokers. Carcinogenesis 2012; 33: 8049.
  • 30
    Ray R, Tyndale RF, Lerman C. Nicotine dependence pharmacogenetics: role of genetic variation in nicotine-metabolizing enzymes. J Neurogenet 2009; 23: 25261.
  • 31
    Benowitz NL. Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 2009; 49: 5771.
  • 32
    Hecht SS, Tobacco smoke carcinogens and lung cancer. In: Penning TM, ed. Chemical carcinogenesis. New York: Springer, 5374.
  • 33
    International Agency for Research on Cancer. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC monographs on the evaluation of carcinogenic risks to humans, vol. 92. Lyon, France: IARC, 2010. 35818.
  • 34
    International Agency for Research on Cancer. Smokeless tobacco and tobacco-specific nitrosamines. IARC monographs on the evaluation of carcinogenic risks to humans, vol. 89. Lyon, France: IARC, 2007. 421583.
  • 35
    Dipple A, Moschel RC, Bigger CAH, Polynuclear aromatic hydrocarbons. In: Searle CE, ed. Chemical carcinogens,2nd edn.,ACS monograph 182, vol. 1. Washington, D.C.: American Chemical Society, 1984. 41163.
  • 36
    Luch A, Baird WM. Metabolic activation and detoxification of polycyclic aromatic hydrocarbons. In: Luch A, ed. The carcinogenic effects of polycyclic aromatic hydrocarbons, London: Imperial College Press, 2005. 1996.
  • 37
    Hecht SS. Progress and challenges in selected areas of tobacco carcinogenesis. Chem Res Toxicol 2008; 21: 16071.
  • 38
    Weng Y, Fang C, Turesky RJ, et al. Determination of the role of target tissue metabolism in lung carcinogenesis using conditional cytochrome P450 reductase-null mice. Cancer Res 2007; 67: 782532.
  • 39
    Hollander MC, Zhou X, Maier CR, et al. A Cyp2a polymorphism predicts susceptibility to NNK-induced lung tumorigenesis in mice. Carcinogenesis 2011; 32: 127984.
  • 40
    Hecht SS. More than 500 trillion molecules of strong carcinogens per cigarette: use in product labelling? 2011; 20: 387.
  • 41
    Hecht SS. Carcinogenicity studies of inhaled cigarette smoke in laboratory animals: old and new. Carcinogenesis 2005; 26: 148892.
  • 42
    Stinn W, Arts JH, Buettner A, et al. Murine lung tumor response after exposure to cigarette mainstream smoke or its particulate and gas/vapor phase fractions. Toxicology 2010; 275: 1020.
  • 43
    International Agency for Research on Cancer. Tobacco smoking. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans, vol. 38. Lyon, France: IARC, 1986. 37375.
  • 44
    Gordon T, Bosland M. Strain-dependent differences in susceptibility to lung cancer in inbred mice exposed to mainstream cigarette smoke. Cancer Lett 2009; 275: 21320.
  • 45
    Hoffmann D, Schmeltz I, Hecht SS, et al, Tobacco carcinogenesis. In: Gelboin H, Ts'o POP, eds. Polycyclic hydrocarbons and cancer, New York: Academic Press, 1978. 85117.
  • 46
    Snook ME, Severson RF, Arrendale RF, et al. Multi-alkyated polynuclear aromatic hydrocarbons of tobacco smoke: separation and identification. J Natl Cancer Inst 1978; 9: 22247.
  • 47
    Snook ME, Severson RF, Arrendale RF, et al. The identification of high molecular weight polynuclear aromatic hydrocarbons in a biologically active fraction of cigarette smoke condensate. Beiträge zur Tabakforschung 1977; 9: 79101.
  • 48
    Rodgman A, Perfetti TA. The composition of cigarette smoke: a catalogue of the polycyclic aromatic hydrocarbons. Beitr Tabakforschung Intl 2006; 22: 1369.
  • 49
    Van Duuren BL, Goldschmidt BM. Cocarcinogenic and tumor-promoting agents in tobacco carcinogenesis. J Natl Cancer Inst 1976; 56: 123742.
  • 50
    Hecht SS, Carmella S, Mori H, et al. Role of catechol as a major cocarcinogen in the weakly acidic fraction of smoke condensate. J Natl Cancer Inst 1981; 66: 1639.
  • 51
    Melikian AA, Jordan KG, Braley J, et al. Effects of catechol on the induction of tumors in mouse skin by 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrenes. Carcinogenesis 1989; 10: 1897900.
  • 52
    Carmella SG, Hecht SS, Tso TC, et al. Roles of tobacco cellulose, sugars, and chlorogenic acid as precursors to catechol in cigarette smoke. J Agric Food Chem 1984; 32: 267273.
  • 53
    Smith CJ, Perfetti TA, King JA. Perspectives on pulmonary inflammation and lung cancer risk in cigarette smokers. Inhal Toxicol 2006; 18: 66777.
  • 54
    Lee JM, Yanagawa J, Peebles KA, et al. Inflammation in lung carcinogenesis: new targets for lung cancer chemoprevention and treatment. Crit Rev Oncol Hematol 2008; 66: 20817.
  • 55
    Malkinson AM. Role of inflammation in mouse lung tumorigenesis: a review. Exp Lung Res 2005; 31: 5782.
  • 56
    Hecht SS, Kassie F, Hatsukami DK. Chemoprevention of lung carcinogenesis in addicted smokers and ex-smokers. Nat Rev Cancer 2009; 9: 47688.
  • 57
    Turner MC, Chen Y, Krewski D, et al. Chronic obstructive pulmonary disease is associated with lung cancer mortality in a prospective study of never smokers. Am J Respir Crit Care Med 2007; 176: 28590.
  • 58
    Dontenwill W, Chevalier HJ, Harke HP, et al. Investigations on the effects of chronic cigarette-smoke inhalation in Syrian golden hamsters. J Natl Cancer Inst 1973; 51: 1781832.
  • 59
    Pfeifer GP, Denissenko MF, Olivier M, et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 2002; 21: 743551.
  • 60
    United States Department of Health and Human Services. How tobacco smoke causes disease: the biology and behavioral basis for smoking-attributable disease: a report of the surgeon general. Washington, D.C.: U.S. Department of Health and Human Services, 2010. Chapter 5.
  • 61
    Munnia A, Bonassi S, Verna A, et al. Bronchial malondialdehyde DNA adducts, tobacco smoking, and lung cancer. Free Radic Biol Med 2006; 41: 1499505.
  • 62
    Anna L, Kovacs K, Gyorffy E, et al. Smoking-related O4-ethylthymidine formation in human lung tissue and comparisons with bulky DNA adducts. Mutagenesis 2011; 26: 5237.
  • 63
    Chou PH, Kageyama S, Matsuda S, et al. Detection of lipid peroxidation-induced DNA adducts caused by 4-oxo-2(E)-nonenal and 4-oxo-2(E)-hexenal in human autopsy tissues. Chem Res Toxicol 2010; 23: 14428.
  • 64
    Boysen G, Hecht SS. Analysis of DNA and protein adducts of benzo[a]pyrene in human tissues using structure-specific methods. Mutat Res 2003; 543: 1730.
  • 65
    Rojas M, Alexandrov K, Cascorbi I, et al. High benzo[a]pyrene diol-epoxide DNA adduct levels in lung and blood cells from individuals with combined CYP1A1 MspI/MspI-GSTM1*0/*0 genotypes. Pharmacogenetics 1998; 8: 10918.
  • 66
    Pfeifer GP, Besaratinia A. Mutational spectra of human cancer. Hum Genet 2009; 125: 493506.
  • 67
    Kucab JE, Phillips DH, Arlt VM. Linking environmental carcinogen exposure to TP53 mutations in human tumours using the human TP53 knock-in (Hupki) mouse model. FEBS J 2010; 277: 256783.
  • 68
    Smith LE, Denissenko MF, Bennett WP, et al. Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. J Natl Cancer Inst 2000; 92: 80311.
  • 69
    Denissenko MF, Pao A, Tang M, et al. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hot spots in P53. Science 1996; 274: 4302.
  • 70
    Tretyakova NT, Matter B, Jones R, et al. Formation of benzo[a]pyrene diol epoxide-DNA adducts at specific guanines within K-ras and p53 gene sequences: stable isotope-labeling mass spectrometry approach. Biochemistry 2002; 41: 953544.
  • 71
    Matter B, Wang G, Jones R, et al. Formation of diastereomeric benzo[a]pyrene diol epoxide-guanine adducts in p53 gene-derived DNA sequences. Chem Res Toxicol 2004; 17: 73141.
  • 72
    Feng Z, Hu W, Hu Y, et al. Acrolein is a major cigarette-related lung cancer agent: preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci USA 2006; 103: 154049.
  • 73
    Zhang S, Villalta PW, Wang M, et al. Detection and quantitation of acrolein-derived 1,N2-propanodeoxyguanosine adducts in human lung by liquid chromatography-electrospray ionization-tandem mass spectrometry. Chem Res Toxicol 2007; 20: 56571.
  • 74
    Zhang S, Balbo S, Wang M, et al. Analysis of acrolein-derived 1,N2-propanodeoxyguanosine adducts in human leukocyte DNA from smokers and nonsmokers. Chem Res Toxicol 2011; 24: 11924.
  • 75
    Hecht SS, Yuan J-M, Hatsukami DK. Applying tobacco carcinogen and toxicant biomarkers in product regulation and cancer prevention. Chem Res Toxicol 2010; 23: 10018.
  • 76
    International Agency for Research on Cancer. Dry cleaning, some chlorinated solvents and other industrial chemicals. IARC monographs on the evaluation of carcinogenic risks to humans, vol. 63. Lyon, France: IARC, 1995. 393407.
  • 77
    DeMarini DM. Genotoxicity of tobacco smoke and tobacco smoke condensate: a review. Mutat Res 2004; 567: 44774.
  • 78
    de Waard F, Kemmeren JM, van Ginkel LA, et al. Urinary cotinine and lung cancer risk in a female cohort. Br J Cancer 1995; 72: 7847.
  • 79
    Boffetta P, Clark S, Shen M, et al. Serum cotinine level as predictor of lung cancer risk. Cancer Epidemiol Biomarkers Prev 2006; 15: 11848.
  • 80
    Yuan JM, Koh WP, Murphy SE, et al. Urinary levels of tobacco-specific nitrosamine metabolites in relation to lung cancer development in two prospective cohorts of cigarette smokers. Cancer Res 2009; 69: 299095.
  • 81
    Hecht SS. Human urinary carcinogen metabolites: biomarkers for investigating tobacco and cancer. Carcinogenesis 2002; 23: 90722.
  • 82
    Church TR, Anderson KE, Caporaso NE, et al. A prospectively measured serum biomarker for a tobacco-specific carcinogen and lung cancer in smokers. Cancer Epidemiol Biomarkers Prev 2009; 18: 2606.
  • 83
    Hecht SS, Chen M, Yagi H, et al. r-1,t-2,3,c-4-Tetrahydroxy-1,2,3,4-tetrahydrophenanthrene in human urine: a potential biomarker for assessing polycyclic aromatic hydrocarbon metabolic activation. Cancer Epidemiol Biomarkers Prev 2003; 12: 15018.
  • 84
    Hecht SS, Carmella SG, Villalta PW, et al. Analysis of phenanthrene and benzo[a]pyrene tetraol enantiomers in human urine: relevance to the bay region diol epoxide hypothesis of benzo[a]pyrene carcinogenesis and to biomarker studies. Chem Res Toxicol 2010; 23: 9009.
  • 85
    Spitz MR, Etzel CJ, Dong Q, et al. An expanded risk prediction model for lung cancer. Cancer Prev Res 2008; 1: 2504.
  • 86
    Cassidy A, Myles JP, van Tongeren M, et al. The LLP risk model: an individual risk prediction model for lung cancer. Br J Cancer 2008; 98: 2706.
  • 87
    Bach PB, Kattan MW, Thornquist MD, et al. Variations in lung cancer risk among smokers. J Natl Cancer Inst 2003; 95: 4708.
  • 88
    Etzel CJ, Kachroo S, Liu M, et al. Development and validation of a lung cancer risk prediction model for African-Americans. Cancer Prev Res (Phila Pa) 2008; 1: 25565.
  • 89
    Cronin KA, Gail MH, Zou Z, et al. Validation of a model of lung cancer risk prediction among smokers. J Natl Cancer Inst 2006; 98: 63740.
  • 90
    Tammemagi CM, Pinsky PF, Caporaso NE, et al. Lung cancer risk prediction: prostate, lung, colorectal and ovarian cancer screening trial models and validation. J Natl Cancer Inst 2011; 103: 105868.
  • 91
    Etzel CJ, Bach PB. Estimating individual risk for lung cancer. Semin Respir Crit Care Med 2011; 32: 39.