SEARCH

SEARCH BY CITATION

References

  • 1
    IARC monographs on the evaluation of carcinogenic risks to human, vol. 64. Lyon, France: IARC, 1995.
  • 2
    Clifford G, Franceschi S, Diaz M, et al. Chapter 3: HPV type-distribution in women with and without cervical neoplastic diseases. Vaccine 2006; 24 (Suppl 3): S3/2634.
  • 3
    Clifford GM, Gallus S, Herrero R, et al. Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet 2005; 366: 9918.
  • 4
    zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2002; 2: 34250.
  • 5
    Munoz N, Bosch FX, de Sanjose S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 2003; 348: 51827.
  • 6
    Schiller JT, Lowy DR. Vaccines to prevent infections by oncoviruses. Annu Rev Microbiol 2010; 64: 2341.
  • 7
    Gissmann L. HPV vaccines: preclinical development. Arch Med Res 2009; 40: 46670.
  • 8
    Joura EA, Leodolter S, Hernandez-Avila M, et al. Efficacy of a quadrivalent prophylactic human papillomavirus (types 6, 11, 16, and 18) L1 virus-like-particle vaccine against high-grade vulval and vaginal lesions: a combined analysis of three randomised clinical trials. Lancet 2007; 369: 1693702.
  • 9
    Paavonen J, Naud P, Salmeron J, et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 2009; 374: 30114.
  • 10
    Christensen ND, Cladel NM, Reed CA, et al. Hybrid papillomavirus L1 molecules assemble into virus-like particles that reconstitute conformational epitopes and induce neutralizing antibodies to distinct HPV types. Virology 2001; 291: 32434.
  • 11
    Christensen ND, Reed CA, Cladel NM, et al. Monoclonal antibodies to HPV-6 L1 virus-like particles identify conformational and linear neutralizing epitopes on HPV-11 in addition to type-specific epitopes on HPV-6. Virology 1996; 224: 47786.
  • 12
    Chen XS, Garcea RL, Goldberg I, et al. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell 2000; 5: 55767.
  • 13
    Gambhira R, Jagu S, Karanam B, et al. Protection of rabbits against challenge with rabbit papillomaviruses by immunization with the N terminus of human papillomavirus type 16 minor capsid antigen L2. J Virol 2007; 81: 1158592.
  • 14
    Kondo K, Ishii Y, Ochi H, et al. Neutralization of HPV16, 18, 31, and 58 pseudovirions with antisera induced by immunizing rabbits with synthetic peptides representing segments of the HPV16 minor capsid protein L2 surface region. Virology 2007; 358: 26672.
  • 15
    Rubio I, Bolchi A, Moretto N, et al. Potent anti-HPV immune responses induced by tandem repeats of the HPV16 L2 (20–38) peptide displayed on bacterial thioredoxin. Vaccine 2009; 27: 194956.
  • 16
    Gambhira R, Karanam B, Jagu S, et al. A protective and broadly cross-neutralizing epitope of human papillomavirus L2. J Virol 2007; 81: 1392731.
  • 17
    Conway MJ, Cruz L, Alam S, et al. Cross-neutralization potential of native human papillomavirus N-terminal L2 epitopes. PLoS One 2011; 6: e16405.
  • 18
    Rubio I, Seitz H, Canali E, et al. The N-terminal region of the human papillomavirus L2 protein contains overlapping binding sites for neutralizing, cross-neutralizing and non-neutralizing antibodies. Virology 2011; 409: 34859.
  • 19
    Dondog B, Clifford GM, Vaccarella S, et al. Human papillomavirus infection in Ulaanbaatar, Mongolia: a population-based study. Cancer Epidemiol Biomarkers Prev 2008; 17: 17318.
  • 20
    Schmitt M, Dondog B, Waterboer T, Pawlita M. Homogeneous amplification of genital human alpha papillomaviruses by PCR using novel broad-spectrum GP5+ and GP6+ primers. J Clin Microbiol 2008; 46: 10509.
  • 21
    Schmitt M, Dondog B, Waterboer T, et al. Abundance of multiple high-risk human papillomavirus (HPV) infections found in cervical cells analyzed by use of an ultrasensitive HPV genotyping assay. J Clin Microbiol 2010; 48: 1439.
  • 22
    Schmitt M, Bravo IG, Snijders PJ, et al. Bead-based multiplex genotyping of human papillomaviruses. J Clin Microbiol 2006; 44: 50412.
  • 23
    Schmitt M, Pawlita M. High-throughput detection and multiplex identification of cell contaminations. Nucleic Acids Res 2009; 37: e119.
  • 24
    Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 29478.
  • 25
    Pastrana DV, Buck CB, Pang YY, et al. Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology 2004; 321: 20516.
  • 26
    Kondo K, Ishii Y, Mori S, et al. Nuclear location of minor capsid protein L2 is required for expression of a reporter plasmid packaged in HPV51 pseudovirions. Virology 2009; 394: 25965.
  • 27
    Buck CB, Thompson CD. Production of papillomavirus-based gene transfer vectors. Current protocols in cell biology/editorial board, Juan S. Bonifacino, [et al.] 2007;Chapter 26:Unit 26 1.
  • 28
    Chen Z, Schiffman M, Herrero R, et al. Evolution and taxonomic classification of human papillomavirus 16 (HPV16)-related variant genomes: HPV31, HPV33, HPV35, HPV52, HPV58 and HPV67. PLoS One 2011; 6: e20183.
  • 29
    Chen Z, DeSalle R, Schiffman M, et al. Evolutionary dynamics of variant genomes of human papillomavirus types 18, 45, and 97. J Virol 2009; 83: 144355.
  • 30
    Lurchachaiwong W, Junyangdikul P, Termrungruanglert W, et al. Whole-genome sequence analysis of human papillomavirus type 18 from infected Thai women. Intervirology 2010; 53: 1616.
  • 31
    Matsukura T, Sugase M. Identification of genital human papillomaviruses in cervical biopsy specimens: segregation of specific virus types in specific clinicopathologic lesions. Int J Cancer 1995; 61: 1322.
  • 32
    Jagu S, Kwak K, Garcea RL, Roden RB. Vaccination with multimeric L2 fusion protein and L1 VLP or capsomeres to broaden protection against HPV infection. Vaccine 2010; 28: 447886.
  • 33
    Schellenbacher C, Roden R, Kirnbauer R. Chimeric L1-L2 virus-like particles as potential broad-spectrum human papillomavirus vaccines. J Virol 2009; 83: 1008595.
  • 34
    Tumban E, Peabody J, Peabody DS, Chackerian B. A pan-HPV vaccine based on bacteriophage PP7 VLPs displaying broadly cross-neutralizing epitopes from the HPV minor capsid protein, L2. PLoS One 2011; 6: e23310.
  • 35
    Day PM, Gambhira R, Roden RB, et al. Mechanisms of human papillomavirus type 16 neutralization by l2 cross-neutralizing and l1 type-specific antibodies. J Virol 2008; 82: 463846.
  • 36
    Kines RC, Thompson CD, Lowy DR, et al. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci USA 2009; 106: 2045863.
  • 37
    Pastrana DV, Vass WC, Lowy DR, Schiller JT. NHPV16 VLP vaccine induces human antibodies that neutralize divergent variants of HPV16. Virology 2001; 279: 3619.