SEARCH

SEARCH BY CITATION

References

  • 1
    Day, R. N. andDavidson, M. W. ( 2009) The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38, 28872921.
  • 2
    Betzig, E.,Patterson, G. H.,Sougrat, R.,Lindwasser, O. W.,Olenych, S., et al.( 2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 16421645.
  • 3
    Hess, S. T.,Girirajan, T. P. K., andMason, M. D. ( 2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 42584272.
  • 4
    Lippincott-Schwartz, J. andPatterson, G. H. ( 2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends. Cell. Biol. 19, 555565.
  • 5
    Subach, F. V.,Piatkevich, K. D., andVerkhusha, V. V. ( 2011) Directed molecular evolution to design advanced red fluorescent proteins. Nat. Methods 8, 10191026.
  • 6
    Dempsey, G. T.,Vaughan, J. C.,Chen, K. H.,Bates, M., andZhuang, X. ( 2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 10271036.
  • 7
    Dickson, R. M.,Cubitt, A. B.,Tsien, R. Y., andMoerner, W. E. ( 1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355358.
  • 8
    Creemers, T. M.,Lock, A. J.,Subramaniam, V.,Jovin, T. M., andVolker, S. ( 1999) Three photoconvertible forms of green fluorescent protein identified by spectral hole-burning. Nat. Struct. Biol. 6, 557560.
  • 9
    Creemers, T. M.,Lock, A. J.,Subramaniam, V.,Jovin, T. M., andVolker, S. ( 2000) Photophysics and optical switching in green fluorescent protein mutants. Proc. Natl. Acad. Sci. USA 97, 29742978.
  • 10
    Creemers, T. M. H.,Lock, A. J.,Subramaniam, V.,Jovin, T. M., andVolker, S. ( 2002) Red-shifted mutants of green fluorescent protein: reversible photoconversions studied by hole-burning and high-resolution spectroscopy. Chem. Phys. 275, 109121.
  • 11
    Sinnecker, D.,Voigt, P.,Hellwig, N., andSchaefer, M. ( 2005) Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44, 70857094.
  • 12
    Nifosi, R.,Ferrari, A.,Arcangeli, C.,Tozzini, V.,Pellegrini, V. et al.( 2003) Photoreversible dark state in a tristable green fluorescent protein variant. J. Phys. Chem. B 107, 16791684.
  • 13
    McAnaney, T. B.,Zeng, W.,Doe, C. F.,Bhanji, N.,Wakelin, S. et al.( 2005) Protonation, photobleaching, and photoactivation of yellow fluorescent protein (YFP 10C): a unifying mechanism. Biochemistry 44, 55105524.
  • 14
    Ando, R.,Mizuno, H., andMiyawaki, A. ( 2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 13701373.
  • 15
    Andresen, M.,Wahl, M. C.,Stiel, A. C.,Grater, F.,Schafer, L. V., et al.( 2005) Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc. Natl. Acad. Sci. U. S. A 102, 1307013074.
  • 16
    Andresen, M.,Stiel, A. C.,Trowitzsch, S.,Weber, G.,Eggeling, C., et al.( 2007) Structural basis for reversible photoswitching in Dronpa. Proc. Natl. Acad. Sci. U. S. A. 104, 1300513009.
  • 17
    Henderson, J. N.,Ai, H. W.,Campbell, R. E., andRemington, S. J. ( 2007) Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc. Natl. Acad. Sci. U. S. A. 104, 66726677.
  • 18
    Adam, V.,Lelimousin, M.,Boehme, S.,Desfonds, G.,Nienhaus, K. et al.( 2008) Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc. Natl. Acad. Sci. U. S. A. 105, 1834318348.
  • 19
    Mizuno, H.,Mal, T. K.,Walchli, M.,Kikuchi, A.,Fukano, T. et al.( 2008) Light-dependent regulation of structural flexibility in a photochromic fluorescent protein. Proc. Natl. Acad. Sci. U. S. A. 105, 92279232.
  • 20
    Brakemann, T.,Weber, G.,Andresen, M.,Groenhof, G.,Stiel, A. C., et al.( 2010) Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron. J. Biol. Chem. 285, 1460314609.
  • 21
    Faro, A. R.,Carpentier, P.,Jonasson, G.,Pompidor, G.,Arcizet, D., et al.( 2011) Low-temperature chromophore isomerization reveals the photoswitching mechanism of the fluorescent protein Padron. J. Am. Chem. Soc. 133, 1636216365.
  • 22
    Bizzarri, R.,Serresi, M.,Cardarelli, F.,Abbruzzetti, S.,Campanini, B., et al.( 2010) Single amino acid replacement makes Aequorea victoria fluorescent proteins reversibly photoswitchable. J. Am. Chem. Soc. 132, 8595.
  • 23
    Grotjohann, T.,Testa, I.,Leutenegger, M.,Bock, H.,Urban, N. T., et al.( 2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478, 204208.
  • 24
    Luin, S.,Voliani, V.,Lanza, G.,Bizzarri, R.,Amat, P., et al.( 2009) Raman study of chromophore states in photochromic fluorescent proteins. J. Am. Chem. Soc. 131, 96103.
  • 25
    Brakemann, T.,Stiel, A. C.,Weber, G.,Andresen, M.,Testa, I. et al.( 2011) A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat. Biotechnol. 29, 942947.
  • 26
    Faro, A. R.,Adam, V.,Carpentier, P.,Darnault, C.,Bourgeois, D., et al.( 2010) Low-temperature switching by photoinduced protonation in photochromic fluorescent proteins. Photochem. Photobiol. Sci. 9, 254262.
  • 27
    Subach, O. M.,Malashkevich, V. N.,Zencheck, W. D.,Morozova, K. S.,Piatkevich, K. D. et al.( 2010) Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins. Chem. Biol. 17, 333341.
  • 28
    Marriott, G.,Mao, S.,Sakata, T.,Ran, J.,Jackson, D. K., et al.( 2008) Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells. Proc. Natl. Acad. Sci. U. S. A. 105, 1778917794.
  • 29
    Adam, V.,Mizuno, H.,Grichine, A.,Hotta, J. I.,Yamagata, Y., et al.( 2010) Data storage based on photochromic and photoconvertible fluorescent proteins. J. Biotechnol. 4, 377390.
  • 30
    Flors, C.,Hotta, J.,Uji-i, H.,Dedecker, P.,Ando, R., et al.( 2007) A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants. J. Am. Chem. Soc. 129, 1397013977.
  • 31
    Shroff, H.,Galbraith, C. G.,Galbraith, J. A.,White, H.,Gillette, J., et al.( 2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl. Acad. Sci. U. S. A. 104, 2030820313.
  • 32
    Fuchs, J.,Bohme, S.,Oswald, F.,Hedde, P. N.,Krause, M., et al.( 2010) A photoactivatable marker protein for pulse-chase imaging with superresolution. Nat. Methods 7, 627630.
  • 33
    Annibale, P.,Scarselli, M.,Kodiyan, A., andRadenovic, A. ( 2010) Photoactivatable fluorescent protein mEos2 displays repeated photoactivation after a long-lived dark state in the red photoconverted form. J. Phys. Chem. Lett. 1, 15061510.
  • 34
    Annibale, P.,Vanni, S.,Scarselli, M.,Rothlisberger, U., andRadenovic, A. ( 2011) Identification of clustering artifacts in photoactivated localization microscopy. Nat. Methods 8, 527528.
  • 35
    Sengupta, P.,Jovanovic-Talisman, T.,Skoko, D.,Renz, M.,Veatch, S. L., et al.( 2011) Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods 8, 969975.
  • 36
    Endesfelder, U.,Malkusch, S.,Flottmann, B.,Mondry, J.,Liguzinski, P., et al.( 2011) Chemically induced photoswitching of fluorescent probes—a general concept for super-resolution microscopy. Molecules 16, 31063118.
  • 37
    Markwardt, M. L.,Kremers, G. J.,Kraft, C. A.,Ray, K.,Cranfill, P. J., et al.( 2011) An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching. PLoS One 6, e17896.
  • 38
    Hofmann, M.,Eggeling, C.,Jakobs, S., andHell, S. W. ( 2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. U. S. A. 102, 1756517569.
  • 39
    Dedecker, P.,Hotta, J.,Flors, C.,Sliwa, M.,Uji-i, H., et al.( 2007) Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. J. Am. Chem. Soc. 129, 1613216141.
  • 40
    Rego, E. H.,Shao, L.,Macklin, J. J.,Winoto, L.,Johansson, G. A., et al.( 2011) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. U. S. A. 109, E135E143.
  • 41
    Adam, V.,Moeyaert, B.,David, C. C.,Mizuno, H.,Lelimousin, M., et al.( 2011) Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications. Chem. Biol. 18, 12411251.
  • 42
    Mizuno, H.,Dedecker, P.,Ando, R.,Fukano, T.,Hofkens, J., et al.( 2010) Higher resolution in localization microscopy by slower switching of a photochromic protein. Photochem. Photobiol. Sci. 9, 239248.
  • 43
    Yang, J. S.,Huang, G. J.,Liu, Y. H., andPeng, S. M. ( 2008) Photoisomerization of the green fluorescence protein chromophore and the meta- and para-amino analogues. Chem. Commun. (Camb), 13441346.
  • 44
    Habuchi, S.,Ando, R.,Dedecker, P.,Verheijen, W.,Mizuno, H. et al.( 2005) Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. U. S. A. 102, 95119516.
  • 45
    Pletnev, S.,Shcherbo, D.,Chudakov, D. M.,Pletneva, N.,Merzlyak, E. M., et al.( 2008) A crystallographic study of bright far-red fluorescent protein mKate reveals pH-induced cis-trans isomerization of the chromophore. J. Biol. Chem. 283, 2898028987.
  • 46
    Violot, S.,Carpentier, P.,Blanchoin, L., andBourgeois, D. ( 2009) Reverse pH-dependence of chromophore protonation explains the large Stokes shift of the red fluorescent protein mKeima. J. Am. Chem. Soc. 131, 1035610357.
  • 47
    Habuchi, S.,Cotlet, M.,Gensch, T.,Bednarz, T.,Haber-Pohlmeier, S., et al.( 2005) Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed. J. Am. Chem. Soc. 127, 89778984.
  • 48
    Loos, D. C.,Habuchi, S.,Flors, C.,Hotta, J.,Wiedenmann, J. et al.( 2006) Photoconversion in the red fluorescent protein from the sea anemone Entacmaea quadricolor: is cis-trans isomerization involved? J. Am. Chem. Soc. 128, 62706271.
  • 49
    Petersen, J.,Wilmann, P. G.,Beddoe, T.,Oakley, A. J.,Devenish, R. J., et al.( 2003) The 2.0-A crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. J. Biol. Chem. 278, 4462644631.
  • 50
    Li, X.,Chung, L. W.,Mizuno, H.,Miyawaki, A., andMorokuma, K. ( 2010) Primary events of photodynamics in reversible photoswitching fluorescent protein Dronpa. J. Phys. Chem. Lett. 1, 33283333.
  • 51
    Ando, R.,Flors, C.,Mizuno, H.,Hofkens, J., andMiyawaki, A. ( 2007) Highlighted generation of fluorescence signals using simultaneous two-color irradiation on Dronpa mutants. Biophys. J. 92, L97L99.
  • 52
    Stiel, A. C.,Trowitzsch, S.,Weber, G.,Andresen, M.,Eggeling, C., et al.( 2007) 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem. J. 402, 3542.
  • 53
    Andresen, M.,Stiel, A. C.,Folling, J.,Wenzel, D.,Schonle, A., et al.( 2008) Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat. Biotechnol. 26, 10351040.
  • 54
    Dedecker, P.,Hotta, J.,Ando, R.,Miyawaki, A.,Engelborghs, Y., et al.( 2006) Fast and reversible photoswitching of the fluorescent protein Dronpa as evidenced by fluorescence correlation spectroscopy. Biophys. J. 91, L45L47.
  • 55
    Fron, E.,Flors, C.,Schweitzer, G.,Habuchi, S.,Mizuno, H., et al.( 2007) Ultrafast excited-state dynamics of the photoswitchable protein Dronpa. J. Am. Chem. Soc. 129, 48704871.
  • 56
    Wilmann, P. G.,Turcic, K.,Battad, J. M.,Wilce, M. C.,Devenish, R. J., et al.( 2006) The 1.7 A crystal structure of Dronpa: a photoswitchable green fluorescent protein. J. Mol. Biol. 364, 213224.
  • 57
    Bourgeois, D. andRoyant, A. ( 2005) Advances in kinetic protein crystallography. Curr. Opin. Struct. Biol. 15, 538547.
  • 58
    Li, X.,Chung, L. W.,Mizuno, H.,Miyawaki, A., andMorokuma, K. ( 2010) A theoretical study on the nature of on- and off-states of reversibly photoswitching fluorescent protein Dronpa: absorption, emission, protonation, and Raman. J. Phys. Chem. B 114, 11141126.
  • 59
    Henderson, J. N. andRemington, S. J. ( 2005) Crystal structures and mutational analysis of amFP486, a cyan fluorescent protein from Anemonia majano. Proc. Natl. Acad. Sci. U. S. A. 102, 1271212717.
  • 60
    Olsen, S.,Lamothe, K., andMartinez, T. J. ( 2010) Protonic gating of excited-state twisting and charge localization in GFP chromophores: a mechanistic hypothesis for reversible photoswitching. J. Am. Chem. Soc. 132, 11921193.
  • 61
    Lukyanov, K. A.,Fradkov, A. F.,Gurskaya, N. G.,Matz, M. V.,Labas, Y. A. et al.( 2000) Natural animal coloration can Be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem. 275, 2587925882.
  • 62
    Chudakov, D. M.,Feofanov, A. V.,Mudrik, N. N.,Lukyanov, S., andLukyanov, K. A. ( 2003) Chromophore environment provides clue to "kindling fluorescent protein" riddle. J. Biol. Chem. 278, 72157219.
  • 63
    Quillin, M. L.,Anstrom, D. A.,Shu, X. K.,O'Leary, S.,Kallio, K. et al.( 2005) Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 angstrom resolution. Biochemistry 44, 57745787.
  • 64
    Schüttrigkeit, T. A.,von Feilitzsch, T.,Kompa, C. K.,Lukyanov, K. A.,Savitsky, A. P. et al.( 2006) Femtosecond study of light-induced fluorescence increase of the dark chromoprotein asFP595. Chem. Phys. 323, 149160.
  • 65
    Schafer, L. V.,Groenhof, G.,Klingen, A. R.,Ullmann, G. M.,Boggio-Pasqua, M., et al.( 2007) Photoswitching of the fluorescent protein asFP595: mechanism, proton pathways, and absorption spectra. Angew. Chem. Int. Ed. Engl. 46, 530536.
  • 66
    Schafer, L. V.,Groenhof, G.,Boggio-Pasqua, M.,Robb, M. A., andGrubmuller, H. ( 2008) Chromophore protonation state controls photoswitching of the fluoroprotein asFP595. PLoS Comput. Biol. 4, e1000034.
  • 67
    Rosenow, M. A.,Huffman, H. A.,Phail, M. E., andWachter, R. M. ( 2004) The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Biochemistry 43, 44644472.
  • 68
    Vogelsang, J.,Kasper, R.,Steinhauer, C.,Person, B.,Heilemann, M., et al.( 2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew. Chem. Int. Ed. Engl. 47, 54655469.
  • 69
    Heilemann, M.,van de Linde, S.,Schuttpelz, M.,Kasper, R.,Seefeldt, B., et al.( 2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. Engl. 47, 61726176.
  • 70
    Haupts, U.,Maiti, S.,Schwille, P., andWebb, W. W. ( 1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 95, 1357313578.
  • 71
    Roy, A.,Field, M. J.,Adam, V., andBourgeois, D. ( 2011) The nature of transient dark states in a photoactivatable fluorescent protein. J. Am. Chem. Soc. 133, 1858618589.
  • 72
    Adam, V.,Carpentier, P.,Violot, S.,Lelimousin, M.,Darnault, C., et al.( 2009) Structural basis of X-ray-induced transient photobleaching in a photoactivatable green fluorescent protein. J. Am. Chem. Soc. 131, 1806318065.
  • 73
    Bogdanov, A. M.,Mishin, A. S.,Yampolsky, I. V.,Belousov, V. V.,Chudakov, D. M., et al.( 2009) Green fluorescent proteins are light-induced electron donors. Nat. Chem. Biol. 5, 459461.
  • 74
    Shaner, N. C.,Lin, M. Z.,McKeown, M. R.,Steinbach, P. A.,Hazelwood, K. L., et al.( 2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545551.
  • 75
    Haddock, S. H.,Mastroianni, N., andChristianson, L. M. ( 2010) A photoactivatable green-fluorescent protein from the phylum Ctenophora. Proc. Biol. Sci. 277, 11551160.