SEARCH

SEARCH BY CITATION

References

  • 1
    Raaflaub, J. ( 1953) Swelling of isolated mitochondria of the liver and their susceptibility to physicochemical influences. Helv. Physiol. Pharmacol. Acta 11, 142156.
  • 2
    Lehninger, A. L. ( 1959) Reversal of various types of mitochondrial swelling by adenosine triphosphate. J. Biol. Chem. 234, 24652471.
  • 3
    Azzone, G. F., and Azzi, A. ( 1965) Volume changes in liver mitochondria. Proc. Natl. Acad. Sci. USA 53, 10841089.
  • 4
    Azzone, G. F. and Azzi, A. ( 1965) Volume changes induced by inorganic phosphate in liver mitochondria. Biochem. J. 94; 10C11C.
  • 5
    Hunter, D. R., Haworth, R. A., and Southard, J. H. ( 1976) Relationship between configuration, function, and permeability in calcium-treated mitochondria. J. Biol. Chem. 251, 50695077.
  • 6
    Lemasters, J. J., Nieminen, A. L., Qian, T., Trost, L. C., Elmore, S. P. et al. ( 1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta 1366: 177196.
  • 7
    Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. ( 1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147157.
  • 8
    Narita, M., Shimizu, S., Ito, T., Chittenden, T., Lutz, R. J. et al. ( 1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl. Acad. Sci. USA 95, 1468114686.
  • 9
    Bernardi, P., Krauskopf, A., Basso, E., Petronilli, V., Blachly-Dyson, E., et al. ( 2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 273, 20772099.
  • 10
    Di Lisa, F., Menabò, R., Canton, M., Barile, M., and Bernardi, P. ( 2001) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J. Biol. Chem. 276, 25712575.
  • 11
    Lee, A. C., Xu, X., Blachly-Dyson, E., Forte, M., and Colombini, M. ( 1998) The role of yeast VDAC genes on the permeability of the mitochondrial outer membrane. J. Membr. Biol. 161, 173181.
  • 12
    Schild, L., Keilhoff, G., Augustin, W., Reiser, G., and Striggow, F. ( 2001) Distinct Ca2+ thresholds determine cytochrome c release or permeability transition pore opening in brain mitochondria. FASEB J. 15, 565567.
  • 13
    Gellerich, F. N., Gizatullina, Z., Gainutdinov, T., Muth, K., Seppet, E., et al. ( 2013) The control of brain mitochondrial energization by cytosolic calcium: The mitochondrial gas pedal. IUBMB Life 65, 000000.
  • 14
    Kirichok, Y., Krapivinsky, G., and Clapham, D. E., ( 2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427, 360364.
  • 15
    De Stefani, D., Raffaello, A., Teardo, E., Szabò, I., and Rizzuto, R. ( 2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336340.
  • 16
    Baughman, J. M., Perocchi, F., Girgis, H. S., Plovanich, M., Belcher-Timme, C. A., et al. ( 2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476: 341345.
  • 17
    Jiang, D., Zhao, L., and Clapham, D. E. ( 2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326, 144147.
  • 18
    Hausenloy, D., Wynne, A., Duchen, M., and Yellon, D. ( 2004) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109, 17141717.
  • 19
    Ichas, F. and Mazat, J. P. ( 1998) From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim. Biophys. Acta 1366, 3350.
  • 20
    Wieckowski, M. R., and Wojtczak, L. ( 1998) Fatty acid-induced uncoupling of oxidative phosphorylation is partly due to opening of the mitochondrial permeability transition pore. FEBS Lett. 423, 339342.
  • 21
    Crompton, M., Ellinger, H., and Costi, A. ( 1988) Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J. 255, 357360.
  • 22
    Broekemeier, K. M., and Pfeiffer, D. R. ( 1989) Cyclosporin A-sensitive and insensitive mechanisms produce the permeability transition in mitochondria. Biochem. Biophys. Res. Commun. 163, 561566.
  • 23
    Gizatullina, Z. Z., Gaynutdinov, T. M., Svoboda, H., Jerzembek, D., Knabe, A., et al. ( 2011) Effects of cyclosporine A and its immunosuppressive or non-immunosuppressive derivatives [D-Ser]8-CsA and Cs9 on mitochondria from different brain regions. Mitochondrion 11, 421429.
  • 24
    Trumbeckaite, S., Gizatullina, Z., Arandarcikaite, O., Röhnert, P., Vielhaber, S., et al. ( 2013) Oxygen glucose deprivation causes mitochondrial dysfunction in cultivated rat hippocampal slices: Protective effects of CsA, its immunosuppressive congener [D-Ser](8)CsA, the novel non-immunosuppressive cyclosporin derivative Cs9, and the NMDA receptor antagonist MK 801. Mitochondrion. 2012 Jul 21. [Epub ahead of print] PMID: 22824458.
  • 25
    Crompton, M., Virji, S., and Ward, J. M. ( 1998) Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur. J. Biochem. 258, 729735.
  • 26
    Vander Heiden, M. G., Chandel, N. S., Williamson, E. K., Schumacker, P. T., and Thompson, C. B. ( 1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91, 627637.
  • 27
    van Loo, G., Saelens, X., van Gurp, M., MacFarlane, M., Martin, S. J., et al. ( 2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ. 9, 10311042.
  • 28
    Halestrap, A. P., Kerr, P. M., Javadov, S., and Woodfield, K. Y. ( 1998) Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim. Biophys. Acta 1366, 7994.
  • 29
    Eskes, R., Antonsson, B., Osen-Sand, A., Montessuit, S., Richter, C., et al. ( 1998) Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J. Cell Biol. 143, 217224.
  • 30
    Whelan, R. S., Konstantinidis, K., Wei, A. C., Chen, Y., Reyna, D. E., et al. ( 2012) Bax regulates primary necrosis through mitochondrial dynamics. Proc. Natl. Acad. Sci. USA 109, 65666571.
  • 31
    Cheng, Y., Gulbins, E., and Siemen, D. ( 2011) Activation of the permeability transition pore by Bax via inhibition of the mitochondrial BK channel. Cell. Physiol. Biochem. 27, 191200.
  • 32
    Petronilli, V., Szabò, I., and Zoratti, M. ( 1989) The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria. FEBS Lett. 259: 137143.
  • 33
    Kinnally, K. W., Campo, M. L., and Tedeschi, H. ( 1989) Mitochondrial channel activity studied by patch-clamping mitoplasts. J. Bioenerg. Biomembr. 21, 497506.
  • 34
    Loupatatzis, C., Seitz, G., Schönfeld, P., Lang, F., and Siemen, D. ( 2002) Single-channel currents of the permeability transition pore from the inner mitochondrial membrane of rat liver and of a human hepatoma cell line. Cell. Physiol. Biochem. 12: 269278.
  • 35
    Szabó, I., and Zoratti, M. ( 1991) The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A. J. Biol. Chem. 266, 33763379.
  • 36
    Sayeed, I., Parvez, S., Winkler-Stuck, K., Seitz, G., Trieu, I., et al. ( 2006) Patch clamp reveals powerful blockade of the mitochondrial permeability transition pore by the D2-receptor agonist pramipexole. FASEB J. 20, 556558.
  • 37
    Benz, R. and Brdiczka D.( 1992) The cation-selective substate of the mitochondrial outer membrane pore: single-channel conductance and influence on intermembrane and peripheral kinases. J. Bioenerg. Biomembr. 24, 3339.
  • 38
    Andrabi, S. A., Sayeed, I., Siemen, D., Wolf, G., and Horn, T. F. ( 2004) Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J. 18, 869871.
  • 39
    Siemen, D., Loupatatzis, C., Borecký, J., Gulbins, E., and Lang, F. ( 1999) Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem. Biophys. Res. Commun. 257: 549554.
  • 40
    Szabó, I., Bock, J., Grassmé, H., Soddemann, M., and Wilker, B. ( 2008) Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes. Proc. Natl. Acad. Sci. U S A 105, 1486114866.
  • 41
    Cheng, Y., Debska-Vielhaber, G., and Siemen, D. ( 2010) Interaction of mitochondrial potassium channels with the permeability transition pore. FEBS Lett. 584, 20052012.
  • 42
    Schendel, S. L., Xie, Z., Montal, M. O., Matsuyama, S., Montal, M., et al. ( 1997) Channel formation by antiapoptotic protein Bcl-2. Proc. Natl. Acad. Sci. USA. 94, 51135118.
  • 43
    Schlesinger, P. H., Gross, A., Yin, X. M., Yamamoto, K., Saito, M., et al. ( 1997) Comparison of the ion channel characteristics of proapoptotic Bax and antiapoptotic Bcl-2. Proc. Natl. Acad. Sci. USA 94, 1135711362.
  • 44
    Antonsson, B., Conti, F., Ciavatta, A., Montessuit, S., Lewis, S., et al. ( 1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277, 370372.
  • 45
    Peixoto, P. M., Ryu, S. Y., Bombrun, A., Antonsson, B., and Kinnally, K. W. ( 2009) MAC inhibitors suppress mitochondrial apoptosis. Biochem. J. 423, 381387.
  • 46
    Colombini M.( 2010) Ceramide channels and their role in mitochondria-mediated apoptosis. Biochim. Biophys. Acta 1797, 12391244.
  • 47
    Shimizu, S., Narita, M., and Tsujimoto, Y. ( 1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483487.
  • 48
    Shimizu, S., Matsuoka, Y., Shinohara, Y., Yoneda, Y., and Tsujimoto, Y. ( 2001) Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J. Cell Biol. 152, 237250.
  • 49
    Tsujimoto, Y. and Shimizu, S. ( 2002) The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84, 187193.
  • 50
    Shoshan-Barmatz, V. and Gincel, D. ( 2003) The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem. Biophys. 39, 279292.
  • 51
    Brdiczka, D., Beutner, G., Rück, A., Dolder, M., and Wallimann, T. ( 1998) The molecular structure of mitochondrial contact sites. Their role in regulation of energy metabolism and permeability transition. Biofactors 8, 235242.
  • 52
    Marzo, I., Brenner, C., Zamzami, N., Jürgensmeier, J. M., Susin, S.A., et al. ( 1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 20272031.
  • 53
    Beutner, G., Rück, A., Riede, B., and Brdiczka, D. ( 1998) Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim. Biophys. Acta 1368, 718.
  • 54
    Cesura, A. M., Pinard, E., Schubenel, R., Goetschy, V., Friedlein, A., et al. ( 2003) The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore. J. Biol. Chem. 278, 4981249818.
  • 55
    Krauskopf, A., Eriksson, O., Craigen, W. J., Forte, M. A., and Bernardi, P. ( 2006) Properties of the permeability transition in VDAC1(-/-) mitochondria. Biochim. Biophys. Acta 1757, 590595.
  • 56
    Rostovtseva, T. K., Tan, W., and Colombini, M. ( 2005) On the role of VDAC in apoptosis: fact and fiction. J. Bioenerg. Biomembr. 37, 129142.
  • 57
    Szabó, I., De Pinto, V., and Zoratti, M. ( 1993) The mitochondrial permeability transition pore may comprise VDAC molecules. II. The electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel. FEBS Lett. 330, 206210.
  • 58
    Baines, C. P., Kaiser, R. A., Sheiko, T., Craigen, W. J., and Molkentin, J. D. ( 2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat. Cell Biol. 9, 550555.
  • 59
    Anholt, R.R., Aebi, U., Pedersen, P.L., and Snyder, S.H. ( 1986) Solubilization and reassembly of the mitochondrial benzodiazepine receptor. Biochemistry 25, 21202125.
  • 60
    McEnery, M. W., Snowman, A. M., Trifiletti, R. R., and Snyder, S. H. ( 1992) Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc. Natl. Acad. Sci. USA 89, 31703174.
  • 61
    Lacapère, J. J., Delavoie, F., Li, H., Péranzi, G., Maccario, J., et al. ( 2001) Structural and functional study of reconstituted peripheral benzodiazepine receptor. Biochem. Biophys. Res. Commun. 284, 536541.
  • 62
    Kinnally, K. W., Zorov, D. B., Antonenko, Y. N., Snyder, S. H., McEnery, M. W., et al. ( 1993) Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. Proc. Natl. Acad. Sci. USA 90, 13741378.
  • 63
    Joo, H. K., Lee, Y. R., Lim, S. Y., Lee, E. J., Choi, S., et al. ( 2012) Peripheral benzodiazepine receptor regulates vascular endothelial activations via suppression of the voltage-dependent anion channel-1. FEBS Lett. 586, 13491355.
  • 64
    Beatrice, M. C., Palmer, J. W., and Pfeiffer, D. R. ( 1980) The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria. J. Biol. Chem. 255, 86638671.
  • 65
    Green, D. R., and Reed, J. C. ( 1998) Mitochondria and apoptosis. Science 281, 13091312.
  • 66
    Kinnally, K. W., Peixoto, P. M., Ryu, S. Y., and Dejean, L. M. ( 2011) Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim. Biophys. Acta 1813, 616622.
  • 67
    Kerr, P. M., Suleiman, M. S., and Halestrap, A. P. ( 1999) Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. Am. J. Physiol. 276, H496H502.
  • 68
    Klingenberg, M., Grebe, K., and Heldt, H. W. ( 1970) On the inhibition of the adenine nucleotide translocation by bongkrekic acid. Biochem. Biophys. Res. Commun. 39, 344351.
  • 69
    Rück, A., Dolder, M., Wallimann, T., and Brdiczka, D. ( 1998) Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore. FEBS Lett. 426, 97101.
  • 70
    Kokoszka, J. E., Waymire, K. G., Levy, S. E., Sligh, J. E., Cai, J., et al. ( 2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427, 461465.
  • 71
    Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., et al. ( 2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652658.
  • 72
    Tsujimoto, Y., Nakagawa, T., and Shimizu, S. ( 2006) Mitochondrial membrane permeability transition and cell death. Biochim. Biophys. Acta 1757, 12971300.
  • 73
    Baines, C. P., Kaiser, R. A., Purcell, N. H., Blair, N. S., Osinska, H., et al. ( 2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658662.
  • 74
    Basso, E., Fante, L., Fowlkes, J., Petronilli, V., Forte, M. A., et al. ( 2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J. Biol. Chem. 280, 1855818561.
  • 75
    Cleary, J., Johnson, K. M., Opipari, A. W.Jr, and Glick, G. D. ( 2007) Inhibition of the mitochondrial F1F0-ATPase by ligands of the peripheral benzodiazepine receptor. Bioorg. Med. Chem. Lett. 17, 16671670.
  • 76
    Stelzer, A. C., Frazee, R. W., Van Huis, C., Cleary, J., Opipari, A. W.Jr., et al. ( 2010) NMR studies of an immunomodulatory benzodiazepine binding to its molecular target on the mitochondrial F(1)F(0)-ATPase. Biopolymers 93, 8592.
  • 77
    Parvez, S., Winkler-Stuck, K., Hertel, S., Schönfeld, P., and Siemen, D. ( 2010) The dopamine-D2-receptor agonist ropinirole dose-dependently blocks the Ca2+-triggered permeability transition of mitochondria. Biochim. Biophys. Acta 1797, 12451250.
  • 78
    Varanyuwatana, P. and Halestrap, A. P. ( 2012) The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore. Mitochondrion 12, 120125.
  • 79
    Krämer R. ( 1998) Mitochondrial carrier proteins can reversibly change their transport mode: the cases of the aspartate/glutamate and the phosphate carrier. Exp. Physiol. 83, 259265.
  • 80
    Di Lisa, F., and Bernardi, P. ( 2009) A CaPful of mechanisms regulating the mitochondrial permeability transition. J. Mol. Cell. Cardiol. 46, 775780.
  • 81
    Basso, E., Petronilli, V., Forte, M. A., and Bernardi, P. ( 2008) Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J. Biol. Chem. 283, 2630726311.
  • 82
    Vaseva, A. V., Marchenko, N. D., Ji, K., Tsirka, S. E., Holzmann, S., et al. ( 2012) p 53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149, 15361548.
  • 83
    Karch, J. and Molkentin, J. D. ( 2012) Is p53 the long-sought molecular trigger for cyclophilin D-regulated mitochondrial permeability transition pore formation and necrosis? Circ. Res. 111, 12581260.
  • 84
    Pavlov, E., Zakharian, E., Bladen, C., Diao, C. T., Grimbly, C., et al. ( 2005) A large, voltage-dependent channel, isolated from mitochondria by water-free chloroform extraction. Biophys. J. 88, 26142625.
  • 85
    Abramov, A. Y., Fraley, C., Diao, C. T., Winkfein, R., Colicos, M. A., et al. ( 2007) Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death. Proc. Natl. Acad. Sci. USA 104, 1809118096.
  • 86
    Gieseler, A., Schultze, A. T., Kupsch, K., Haroon. M. F., Wolf, G., et al. ( 2009) Inhibitory modulation of the mitochondrial permeability transition by minocycline. Biochem. Pharmacol. 77, 888896.
  • 87
    Gordon, P. H., Moore, D. H., Miller, R. G., Florence, J. M., Verheijde, J. L., et al. ( 2007) Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 6, 10451053.
  • 88
    Kupsch, K., Hertel, S., Kreutzmann, P., Wolf, G., Wallesch, C. W., et al. ( 2009) Impairment of mitochondrial function by minocycline. FEBS J. 276, 17291738.
  • 89
    Wasilewski, M., Semenzato, M., Rafelski, S. M., Robbins, J., Bakardjiev, A. I., et al. ( 2012) Optic atrophy 1-dependent mitochondrial remodeling controls steroidogenesis in trophoblasts. Curr. Biol. 22, 12281234.
  • 90
    Westermann, B. ( 2012) Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys. Acta 1817, 18331838.
  • 91
    Zhang, Y. and Chan, D. C. ( 2007) New insights into mitochondrial fusion. FEBS Lett. 581, 21682173.
  • 92
    Frezza, C., Cipolat, S., Martins de Brito, O., Micaroni, M., Beznoussenko, G. V., et al. ( 2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126: 177189.
  • 93
    Morota, S., Månsson, R., Hansson, M. J., Kasuya, K., Shimazu, M., et al. ( 2009) Evaluation of putative inhibitors of mitochondrial permeability transition for brain disorders-specificity vs. toxicity. Exp. Neurol. 218, 353362.