SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Chance, B. and Williams, G. R. ( 1955) Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem. 217, 383393.
  • 2
    Chance, B. and Williams, G. R. ( 1956) The respiratory chain and oxidative phosphorylation. Adv. Enzymol. Relat. Subj. Biochem. 17, 65134.
  • 3
    Korzeniewski, B. ( 2007) Regulation of oxidative phosphorylation through parallel activation. Biophys. Chem. 129, 93110.
  • 4
    Tager, J. M., Wanders, R. J., Groen, A. K., Kunz, W., Bohnensack, R., et al. ( 1983) Control of mitochondrial respiration. FEBS Lett. 151, 19.
  • 5
    Bohnensack, R. ( 1984) Rate law of mitochondrial respiration versus extramitochondrial ATP/ADP ratio. Biochim. Biophys. Acta 43, 403411.
  • 6
    Heineman, F. W. and Balaban, R. S. ( 1990) Phosphorus-31 nuclear magnetic resonance analysis of transient changes of canine myocardial metabolism in vivo. J. Clin. Invest. 85, 843852.
  • 7
    Sharma, N., Okere, I. C., Brunengraber, D. Z., McElfresh, T. A., King, K. L., et al. ( 2005) Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation. J. Physiol. 562, 593603.
  • 8
    Lei, H., Ugurbil, K., and Chen, W. ( 2003) Measurement of unidirectional Pi to ATP flux in human visual cortex at 7 T by using in vivo 31P magnetic resonance spectroscopy. Proc. Natl. Acad. Sci. USA 100, 1440914414.
  • 9
    Du, F., Zhu, X. H., Zhang, Y., Friedman, M., Zhang, N., et al. ( 2008) Tightly coupled brain activity and cerebral ATP metabolic rate. Proc. Natl. Acad. Sci. USA 105, 64096414.
  • 10
    Gellerich, F. N., Schlame, M., Bohnensack, R., and Kunz, W. ( 1987) Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria. Biochim. Biophys. Acta 890, 117126.
  • 11
    Laterveer, F. D., Nicolay, K., and Gellerich, F. N. ( 1996) ADP delivery from adenylate kinase in the mitochondrial intermembrane space to oxidative phosphorylation increases in the presence of macromolecules. FEBS Lett. 386, 255259.
  • 12
    Laterveer, F. D., Nicolay, K., and Gellerich, F. N. ( 1997) Experimental evidence for dynamic compartmentation of ADP at the mitochondrial periphery: coupling of mitochondrial adenylate kinase and mitochondrial hexokinase with oxidative phosphorylation under conditions mimicking the intracellular colloid osmotic pressure. Mol. Cell. Biochem. 174, 4351.
  • 13
    Gellerich, F. N., Laterveer, F. D., Korzeniewski, B., Zierz, S., and Nicolay, K. ( 1998) Dextran strongly increases the Michaelis constants of oxidative phosphorylation and of mitochondrial creatine kinase in heart mitochondria. Eur. J. Biochem. 254, 172180.
  • 14
    Zimmerberg, J. and Parsegian, V. A. ( 1986) Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature 323, 3639.
  • 15
    Wicker, U., Bucheler, K., Gellerich, F. N., Wagner, M., Kapischke, M., et al. ( 1993) Effect of macromolecules on the structure of the mitochondrial inter-membrane space and the regulation of hexokinase. Biochim. Biophys. Acta 1142, 228239.
  • 16
    Guzun, R., Gonzalez-Granillo, M., Karu-Varikmaa, M., Grichine, A., Usson, Y., et al. ( 2012) Regulation of respiration in muscle cells in vivo by VDAC through interaction with the cytoskeleton and MtCK within Mitochondrial Interactosome. Biochim. Biophys. Acta 1818, 15451554.
  • 17
    Colombini, M. ( 2012) VDAC structure, selectivity, and dynamics. Biochim. Biophys. Acta 1818, 14571465.
  • 18
    Shoshan-Barmatz, V., De Pinto, V., Zweckstetter, M., Raviv, Z., Keinan, N., et al. ( 2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol. Aspects Med. 31, 227285.
  • 19
    Guzun, R., Timohhina, N., Tepp, K., Gonzalez-Granillo, M., Shevchuk, I., et al. ( 2011) Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function. Amino Acids 40, 13331348.
  • 20
    Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger, H. M. ( 1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem. J. 281 ( Part 1), 2140.
  • 21
    Kammermeier, H. ( 1987) Why do cells need phosphocreatine and a phosphocreatine shuttle. J. Mol. Cell Cardiol. 19, 115118.
  • 22
    Gellerich, F. N. ( 1992) The role of adenylate kinase in dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space. FEBS Lett. 297, 5558.
  • 23
    Zeleznikar, R. J., Dzeja, P. P., and Goldberg, N. D. ( 1995) Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle. J. Biol. Chem. 270, 73117319.
  • 24
    Aflalo, C. ( 1997) Localized firefly luciferase probes ATP at the surface of mitochondria. J. Bioenerg. Biomembr. 29, 549559.
  • 25
    Laterveer, F. D., Gellerich, F. N., and Nicolay, K. ( 1995) Macromolecules increase the channeling of ADP from externally associated hexokinase to the matrix of mitochondria. Eur. J. Biochem. 232, 569577.
  • 26
    Moreno-Sanchez, R. and Hansford, R. G. ( 1988) Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial free Ca2+ concentration. Biochem. J. 256, 403412.
  • 27
    Denton, R. M. and McCormack, J. G. ( 1990) Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annu. Rev. Physiol. 52, 451466.
  • 28
    McCormack, J. G. and Denton, R. M. ( 1979) The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem. J. 180, 533544.
  • 29
    Gunter, T. E. and Sheu, S. S. ( 2009) Characteristics and possible functions of mitochondrial Ca(2+) transport mechanisms. Biochim. Biophys. Acta 1787, 12911308.
  • 30
    Vinogradov, A. and Scarpa, A. ( 1973) The initial velocities of calcium uptake by rat liver mitochondria. J. Biol. Chem. 248, 55275531.
  • 31
    Moreau, B., Nelson, C., and Parekh, A. B. ( 2006) Biphasic regulation of mitochondrial Ca2+ uptake by cytosolic Ca2+ concentration. Curr. Biol. 16, 16721677.
  • 32
    McCormack, J. G. ( 1989) Effects of spermine on mitochondrial Ca2+ transport and the ranges of extramitochondrial Ca2+ to which the matrix Ca2+-sensitive dehydrogenases respond. Biochem. J. 264, 167174.
  • 33
    Gellerich, F. N., Gizatullina, Z., Nguyen, H. P., Trumbeckaite, S., Vielhaber, S., et al. ( 2008) Impaired regulation of brain mitochondria by extramitochondrial Ca2+ in transgenic Huntington disease rats. J. Biol. Chem. 283, 3071530724.
  • 34
    Gellerich, F. N., Gizatullina, Z., Arandarcikaite, O., Jerzembek, D., Vielhaber, S., et al. ( 2009) Extramitochondrial Ca2+ in the nanomolar range regulates glutamate-dependent oxidative phosphorylation on demand. PLoS One 4, e8181.
  • 35
    Gellerich, F. N., Gizatullina, Z., Trumbeckaite, S., Nguyen, H. P., Pallas, T., et al. ( 2010) The regulation of OXPHOS by extramitochondrial calcium. Biochim. Biophys. Acta 1797, 10181027.
  • 36
    Gellerich, F. N., Gizatullina, Z., Trumbekaite, S., Korzeniewski, B., Gaynutdinov, T., et al. ( 2012) Cytosolic Ca2+ regulates the energization of isolated brain mitochondria by formation of pyruvate through the malate-aspartate shuttle. Biochem. J. 443, 747755.
  • 37
    Chalmers, S. and Nicholls, D. G. ( 2003) The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J. Biol. Chem. 278, 1906219070.
  • 38
    Satrustegui, J., Pardo, B., and Del Arco, A. ( 2007) Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol. Rev. 87, 2967.
  • 39
    Contreras, L., Gomez-Puertas, P., Iijima, M., Kobayashi, K., Saheki, T., et al. ( 2007) Ca2+ Activation kinetics of the two aspartate-glutamate mitochondrial carriers, aralar and citrin: role in the heart malate-aspartate NADH shuttle. J. Biol. Chem. 282, 70987106.
  • 40
    Contreras, L. and Satrustegui, J. ( 2009) Calcium signaling in brain mitochondria: interplay of malate aspartate NADH shuttle and calcium uniporter/mitochondrial dehydrogenase pathways. J. Biol. Chem. 284, 70917099.
  • 41
    Lasorsa, F. M., Pinton, P., Palmieri, L., Fiermonte, G., Rizzuto, R., et al. ( 2003) Recombinant expression of the Ca(2+)-sensitive aspartate/glutamate carrier increases mitochondrial ATP production in agonist-stimulated Chinese hamster ovary cells. J. Biol. Chem. 278, 3868638692.
  • 42
    McCormack, J. G., Halestrap, A. P., and Denton, R. M. ( 1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70, 391425.
  • 43
    Moreno-Sanchez, R. and Hansford, R. G. ( 1988) Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial free Ca2+ concentration. Biochem. J. 256, 403412.
  • 44
    Korzeniewski, B. ( 1998) Regulation of ATP supply during muscle contraction: theoretical studies. Biochem. J. 330 ( Part 3), 11891195.
  • 45
    Kauppinen, R. A., Sihra, T. S., and Nicholls, D. G. ( 1987) Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochim. Biophys. Acta. 930, 173178.
  • 46
    Papa, S. and Paradies, G. ( 1974) On the mechanism of translocation of pyruvate and other monocarboxylic acids in rat-liver mitochondria. Eur. J. Biochem. 49, 265274.
  • 47
    Kobayashi, K. and Neely, J. R. ( 1983) Mechanism of pyruvate dehydrogenase activation by increased cardiac work. J. Mol. Cell. Cardiol. 15, 369382.
  • 48
    Yang, S. Y., He, X. Y., and Schulz, H. ( 1987) Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase. J. Biol. Chem. 262, 1302713032.
  • 49
    Smith, S. B., Briggs, S., Triebwasser, K. C., and Freedland, R. A. ( 1977) Re-evaluation of amino-oxyacetate as an inhibitor. Biochem. J. 162, 453455.
  • 50
    Bunger, R., Glanert, S., Sommer, O., and Gerlach, E. ( 1980) Inhibition by (aminooxy)acetate of the malate-aspartate cycle in the isolated working guinea pig heart. Hoppe-Seyler's Z. Physiol. Chem. 361, 907914.
  • 51
    Chen, C. C., Chang, J., and Chen, W. C. ( 1996) Potentiation of bradykinin-induced inositol phosphates production by cyclic AMP elevating agents and endothelin-1 in cultured astrocytes. Glia 16, 210217.
  • 52
    Itoh, T., Niwa, H., Nagamatsu, M., Mitsuma, T., Miyakawa, A., et al. ( 1998) Nerve growth factor maintains regulation of intracellular calcium in neonatal sympathetic neurons but not in mature or aged neurons. Neuroscience 82, 641651.
  • 53
    Wan, X., Harris, J. A., and Morris, C. E. ( 1995) Responses of neurons to extreme osmomechanical stress. J. Membr. Biol. 145, 2131.
  • 54
    Tirosh, O., Sen, C. K., Roy, S., and Packer, L. ( 2000) Cellular and mitochondrial changes in glutamate-induced HT4 neuronal cell death. Neuroscience 97, 531541.
  • 55
    Berridge, M. J. ( 1998) Neuronal calcium signaling. Neuron 21, 1326.
  • 56
    Blaustein, M. P. ( 1988) Calcium transport and buffering in neurons. Trends Neurosci. 11, 438443.
  • 57
    Regehr, W. G. and Tank, D. W. ( 1992) Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells. J. Neurosci. 12, 42024223.
  • 58
    Miyakawa, H., Ross, W. N., Jaffe, D., Callaway, J. C., Lasser-Ross, N., et al. ( 1992) Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels. Neuron 9, 11631173.
  • 59
    Knopfel, T. and Gahwiler, B. H. ( 1992) Activity-induced elevations of intracellular calcium concentration in pyramidal and nonpyramidal cells of the CA3 region of rat hippocampal slice cultures. J. Neurophysiol. 68, 961963.
  • 60
    Choi, D. W. ( 1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 11, 465469.
  • 61
    Surmeier, D. J. ( 2007) Calcium, ageing, and neuronal vulnerability in Parkinson's disease. Lancet Neurol. 6, 933938.
  • 62
    Berridge, M. J., Lipp, P., and Bootman, M. D. ( 2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 1121.
  • 63
    Colwell, C. S. ( 2000) Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. Eur. J. Neurosci. 12, 571576.
  • 64
    Colwell, C. S. ( 2011) Linking neural activity and molecular oscillations in the SCN. Nat. Rev. Neurosci. 12, 553569.
  • 65
    Ikeda, M., Sugiyama, T., Wallace, C. S., Gompf, H. S., Yoshioka, T., et al. ( 2003) Circadian dynamics of cytosolic and nuclear Ca2+ in single suprachiasmatic nucleus neurons. Neuron 38, 253263.
  • 66
    Irwin, R. P. and Allen, C. N. ( 2009) GABAergic signaling induces divergent neuronal Ca2+ responses in the suprachiasmatic nucleus network. Eur. J. Neurosci. 30, 14621475.
  • 67
    Verkhratsky, A. ( 2004) Endoplasmic reticulum calcium signaling in nerve cells. Biol. Res. 37, 693699.
  • 68
    Mattson, M. P. and Chan, S. L. ( 2003) Neuronal and glial calcium signaling in Alzheimer's disease. Cell Calcium 34, 385397.
  • 69
    Loy, R. E., Orynbayev, M., Xu, L., Andronache, Z., Apostol, S., et al. ( 2011) Muscle weakness in Ryr1I4895T/WT knock-in mice as a result of reduced ryanodine receptor Ca2+ ion permeation and release from the sarcoplasmic reticulum. J. Gen. Physiol. 137, 4357.
  • 70
    Mammucari, C., Patron, M., Granatiero, V., and Rizzuto, R. ( 2011) Molecules and roles of mitochondrial calcium signaling. Biofactors 37, 219227.
  • 71
    Nicholls, D. G. ( 1978) The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem. J. 176, 463474.
  • 72
    Liu, X., Gong, H., Li, X., and Zhou, W. ( 2008) Monitoring calcium concentration in neurons with cameleon. J. Biosci. Bioeng. 105, 106109.
  • 73
    Buchholz, J., Tsai, H., Foucart, S., and Duckles, S. P. ( 1996) Advancing age alters intracellular calcium buffering in rat adrenergic nerves. Neurobiol. Aging 17, 885892.
  • 74
    Kuchibhotla, K. V., Goldman, S. T., Lattarulo, C. R., Wu, H. Y., Hyman, B. T., et al. ( 2008) Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59, 214225.
  • 75
    Li, D., Lee, C. W., Buckler, K., Parekh, A., Herring, N., et al. ( 2012) Abnormal intracellular calcium homeostasis in sympathetic neurons from young prehypertensive rats. Hypertension 59, 642649.
  • 76
    Abramov, A. Y., Canevari, L., and Duchen, M. R. ( 2003) Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci. 23, 50885095.
  • 77
    Hartmann, H., Eckert, A., and Muller, W. E. ( 1994) Disturbances of the neuronal calcium homeostasis in the aging nervous system. Life Sci. 55, 20112018.
  • 78
    Brailoiu, G. C., Deliu, E., Tica, A. A., Chitravanshi, V. C., and Brailoiu, E. ( 2012) Urocortin 3 elevates cytosolic calcium in nucleus ambiguus neurons. J. Neurochem. 122, 11291136.
  • 79
    Nilsson, M., Eriksson, P. S., Ronnback, L., and Hansson, E. ( 1993) GABA induces Ca2+ transients in astrocytes. Neuroscience 54, 605614.
  • 80
    Eriksson, P. S., Nilsson, M., Wagberg, M., Hansson, E., and Ronnback, L. ( 1993) Kappa-opioid receptors on astrocytes stimulate L-type Ca2+ channels. Neuroscience 54, 401407.
  • 81
    Ullah, G., Jung, P., and Cornell-Bell, A. H. ( 2006) Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration. Cell Calcium 39, 197208.
  • 82
    Muller, W., Heinemann, U., and Schuchmann, S. ( 1997) Impaired Ca-signaling in astrocytes from the Ts16 mouse model of Down syndrome. Neurosci. Lett. 223, 8184.
  • 83
    Golovina, V. A., Bambrick, L. L., Yarowsky, P. J., Krueger, B. K., and Blaustein, M. P. ( 1996) Modulation of two functionally distinct Ca2+ stores in astrocytes: role of the plasmalemmal Na/Ca exchanger. Glia 16, 296305.
  • 84
    Haughey, N. J. and Mattson, M. P. ( 2003) Alzheimer's amyloid beta-peptide enhances ATP/gap junction-mediated calcium-wave propagation in astrocytes. Neuromol. Med. 3, 173180.
  • 85
    Khodakhah, K. and Ogden, D. ( 1993) Functional heterogeneity of calcium release by inositol trisphosphate in single Purkinje neurones, cultured cerebellar astrocytes, and peripheral tissues. Proc. Natl. Acad. Sci. USA 90, 49764980.
  • 86
    Maeda, H., Ellis-Davies, G. C., Ito, K., Miyashita, Y., and Kasai, H. ( 1999) Supralinear Ca2+ signaling by cooperative and mobile Ca2+ buffering in Purkinje neurons. Neuron 24, 9891002.
  • 87
    Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., et al. ( 1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376389.
  • 88
    Trevelyan, A. J., Kirby, D. M., Smulders-Srinivasan, T. K., Nooteboom, M., Acin-Perez, R., et al. ( 2010) Mitochondrial DNA mutations affect calcium handling in differentiated neurons. Brain 133, 787796.
  • 89
    Jaiswal, M. K., Zech, W. D., Goos, M., Leutbecher, C., Ferri, A., et al. ( 2009) Impairment of mitochondrial calcium handling in a mtSOD1 cell culture model of motoneuron disease. BMC Neurosci. 10, 64.
  • 90
    Meldrum, B. S. ( 1986) Cell damage in epilepsy and the role of calcium cytotoxicity. Adv. Neurol. 44, 849855.
  • 91
    Huang, T. J., Sayers, N. M., Fernyhough, P., and Verkhratsky, A. ( 2002) Diabetes-induced alterations in calcium homeostasis in sensory neurones of streptozotocin-diabetic rats are restricted to lumbar ganglia and are prevented by neurotrophin-3. Diabetologia 45, 560570.
  • 92
    Bezprozvanny, I. and Hayden, M. R. ( 2004) Deranged neuronal calcium signaling and Huntington disease. Biochem. Biophys. Res. Commun. 322, 13101317.
  • 93
    Kawahara, M., Negishi-Kato, M., and Sadakane, Y. ( 2009) Calcium dyshomeostasis and neurotoxicity of Alzheimer's beta-amyloid protein. Expert. Rev. Neurother. 9, 681693.
  • 94
    Goldberg, J. A., Guzman, J. N., Estep, C. M., Ilijic, E., Kondapalli, J., et al. ( 2012) Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson's disease. Nat. Neurosci. 15, 14141421.
  • 95
    Vanselow, B. K. and Keller, B. U. ( 2000) Calcium dynamics and buffering in oculomotor neurones from mouse that are particularly resistant during amyotrophic lateral sclerosis (ALS)-related motoneurone disease. J. Physiol. 525 ( Part 2), 433445.
  • 96
    Meske, V., Hamker, U., Albert, F., and Ohm, T. G. ( 1998) The effects of beta/A4-amyloid and its fragments on calcium homeostasis, glial fibrillary acidic protein and S100beta staining, morphology and survival of cultured hippocampal astrocytes. Neuroscience 85, 11511160.
  • 97
    Fuchs, A., Lirk, P., Stucky, C., Abram, S. E., and Hogan, Q. H. ( 2005) Painful nerve injury decreases resting cytosolic calcium concentrations in sensory neurons of rats. Anesthesiology 102, 12171225.
  • 98
    Lim, D., Fedrizzi, L., Tartari, M., Zuccato, C., Cattaneo, E., et al. ( 2008) Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J. Biol. Chem. 283, 57805789.
  • 99
    Busche, M. A., Eichhoff, G., Adelsberger, H., Abramowski, D., Wiederhold, K. H., et al. ( 2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease. Science 321, 16861689.
  • 100
    De la Fuente, I. M., Vadillo, F., Perez-Samartin, A. L., Perez-Pinilla, M. B., Bidaurrazaga, J., et al. ( 2010) Global self-regulation of the cellular metabolic structure. PLoS One 5, e9484.
  • 101
    Ramoz, N., Reichert, J. G., Smith, C. J., Silverman, J. M., Bespalova, I. N., et al. ( 2004) Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am. J. Psychiatry 161, 662669.
  • 102
    Napolioni, V., Persico, A. M., Porcelli, V., and Palmieri, L. ( 2011) The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: physiological links and abnormalities in autism. Mol. Neurobiol. 44, 8392.
  • 103
    Palmieri, F. ( 2008) Diseases caused by defects of mitochondrial carriers: a review. Biochim. Biophys. Acta 1777, 564578.
  • 104
    Palmieri, L. and Persico, A. M. ( 2010) Mitochondrial dysfunction in autism spectrum disorders: cause or effect? Biochim. Biophys. Acta. 1797, 11301137.
  • 105
    Sinasac, D. S., Moriyama, M., Jalil, M. A., Begum, L., Li, M. X., et al. ( 2004) Slc25a13-knockout mice harbor metabolic deficits but fail to display hallmarks of adult-onset type II citrullinemia. Mol. Cell. Biol. 24, 527536.
  • 106
    Saheki, T., Inoue, K., Ono, H., Tushima, A., Katsura, N., et al. ( 2011) Metabolomic analysis reveals hepatic metabolite perturbations in citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mice, a model of human citrin deficiency. Mol. Genet. Metab. 104, 492500.