• 1
    Cinti, S. (2012) The adipose organ at a glance. Dis. Model. Mech. 5, 588594.
  • 2
    Rosen, E. D. and Spiegelman, B. M. (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847853.
  • 3
    Trayhurn, P. and Wood, I. S. (2005) Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem. Soc. Trans. 33, 10781081.
  • 4
    Cao, H., Gerhold, K., Mayers, J. R., Wiest, M. M., Watkins, S. M., et al. (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134, 933944.
  • 5
    Nedergaard, J., Bengtsson, T., Cannon, B. (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444E452.
  • 6
    Cypess, A. M., Lehman, S., Williams, G., Tal, I., Rodman, D., et al. (2009) Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 15091517.
  • 7
    Seale, P. and Lazar, M. A. (2009) Brown fat in humans: turning up the heat on obesity. Diabetes 58, 14821484.
  • 8
    Petrovic, N., Walden, T. B., Shabalina, I. G., Timmons, J. A., Cannon, B., et al. (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285, 71537164.
  • 9
    Frontini, A. and Cinti, S. (2010) Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 11, 253256.
  • 10
    Spalding, K. L., Arner, E., Westermark, P. O., Bernard, S., Buchholz, B. A., et al. (2008) Dynamics of fat cell turnover in humans. Nature 453, 783787.
  • 11
    Jo, J., Gavrilova, O., Pack, S., Jou, W., Mullen, S., et al. (2009) Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput. Biol. 5, e1000324.
  • 12
    Rodeheffer, M. S., Birsoy, K., and Friedman, J. M. (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135, 240249.
  • 13
    Dazzi, F., Ramasamy, R., Glennie, S., Jones, S. P., and Roberts, I. (2006) The role of mesenchymal stem cells in haemopoiesis. Blood Rev. 20, 161171.
  • 14
    Tchoukalova, Y. D., Votruba, S. B., Tchkonia, T., Giorgadze, N., Kirkland, J. L., et al. (2010) Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc. Natl. Acad. Sci. USA 107, 1822618231.
  • 15
    van Hammerlen, V, Skurk, T., Rohrig, K., Lee, Y. M., Halbleib, M., et al. (2003) Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. Int. J. Obes. Relat. Metab. Disord. 27, 889895.
  • 16
    Seale, P., Bjork, B., Yang, W., Kajimura, S., Chin, S., et al. (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961967.
  • 17
    Barbatelli, G., Murano, I., Madsen, L., Hao, Q., Jimenez, M., et al. (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am. J. Physiol. Endocrinol. Metab. 298, E1244E1253.
  • 18
    Siersbaek, R., Nielsen, R., and Mandrup, S. (2012) Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol. Metab. 23, 5664.
  • 19
    Vila-Bedmar, R. and Fernandez-Veledo, S. (2011) A new era for brown adipose tissue: new insights into brown adipocyte function and differentiation. Arch. Physiol. Biochem. 117, 195208.
  • 20
    Cao, W., Daniel, K. W., Robidoux, J., Puigserver, P., Medvedev, A. V., et al. (2004) p38 Mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell. Biol. 24, 30573067.
  • 21
    Bost, F., Aouadi, M., Caron, L., and Binetruy, B. (2005) The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87, 5156.
  • 22
    Shi, H., Halvorsen, Y. D., Ellis, P. N., Wilkison, W. O., and Zemel, M. B. (2000) Role of intracellular calcium in human adipocyte differentiation. Physiol. Genomics 3, 7582.
  • 23
    Hardie, D. G., Ross, F. A., and Hawley, S. A. (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251262.
  • 24
    Yamaguchi, S., Katahira, H., Ozawa, S., Nakamichi, Y., Tanaka, T. et al. (2005) Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 289, E643E649.
  • 25
    Fernandez-Veledo, S., Vila-Bedmar, R., Nieto-Vazquez, I., and Lorenzo, M. (2009) c-Jun N-terminal kinase 1/2 activation by tumor necrosis factor-alpha induces insulin resistance in human visceral but not subcutaneous adipocytes: reversal by liver X receptor agonists. J. Clin. Endocrinol. Metab. 94, 35833593.
  • 26
    Salt, I. P., Connell, J. M., and Gould, G. W. (2000) 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. Diabetes 49, 16491656.
  • 27
    Taylor, E. B., An, D., Kramer, H. F., Yu, H., Fujii, N. L., et al. (2008) Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J. Biol. Chem. 283, 97879796.
  • 28
    Lin, Y. Y., Kiihl, S., Suhail, Y., Liu, S. Y., Chou, Y. H., et al. (2012) Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK. Nature 482, 251255.
  • 29
    Ceddia, R. B. (2013) The role of AMP-activated protein kinase in regulating white adipose tissue metabolism. Mol. Cell. Endocrinol. 366, 194203.
  • 30
    Mulligan, J. D., Gonzalez, A. A., Stewart, A. M., Carey, H. V., and Saupe, K. W. (2007) Upregulation of AMPK during cold exposure occurs via distinct mechanisms in brown and white adipose tissue of the mouse. J. Physiol. 580, 677684.
  • 31
    Villena, J. A., Viollet, B., Andreelli, F., Kahn, A., Vaulont, S., et al. (2004) Induced adiposity and adipocyte hypertrophy in mice lacking the AMP-activated protein kinase-alpha2 subunit. Diabetes 53, 22422249.
  • 32
    Bauwens, J. D., Schmuck, E. G., Lindholm, C. R., Ertel, R. L., Mulligan, J. D., et al. (2011) Cold tolerance, cold-induced hyperphagia, and nonshivering thermogenesis are normal in alpha(1)-AMPK-/- mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R473R483.
  • 33
    Sponarova, J., Mustard, K. J., Horakova, O., Flachs, P., Rossmeisl, M., et al. (2005) Involvement of AMP-activated protein kinase in fat depot-specific metabolic changes during starvation. FEBS Lett. 579, 61056110.
  • 34
    Park, H., Kaushik, V. K., Constant, S., Prentki, M., Przybytkowski, E., et al. (2002) Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J. Biol. Chem. 277, 3257132577.
  • 35
    Vila-Bedmar, R., Garcia-Guerra, L., Nieto-Vazquez, I., Mayor, F., Jr., Lorenzo, M., et al. (2012) GRK2 contribution to the regulation of energy expenditure and brown fat function. FASEB J. 26, 35033514.
  • 36
    Gauthier, M. S., Miyoshi, H., Souza, S. C., Cacicedo, J. M., Saha, A. K., et al. (2008) AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. J. Biol. Chem. 283, 1651416524.
  • 37
    Pulinilkunnil, T., He, H., Kong, D., Asakura, K., Peroni, O. D., et al. (2011) Adrenergic regulation of AMP-activated protein kinase in brown adipose tissue in vivo. J. Biol. Chem. 286, 87988809.
  • 38
    Minokoshi, Y., Kim, Y. B., Peroni, O. D., Fryer, L. G., Muller, C., et al. (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339343.
  • 39
    Wu, X., Motoshima, H., Mahadev, K., Stalker, T. J., Scalia, R., et al. (2003) Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52, 13551363.
  • 40
    Hawley, S. A., Ross, F. A., Chevtzoff, C., Green, K. A., Evans, A., et al. (2010) Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 11, 554565.
  • 41
    Kubota, N., Terauchi, Y., Kubota, T., Kumagai, H., Itoh, S., et al. (2006) Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and -independent pathways. J. Biol. Chem. 281, 87488755.
  • 42
    Lee, W. H. and Kim, S. G. (2010) AMPK-dependent metabolic regulation by PPAR agonists. PPAR Res. pii, 549101.
  • 43
    Habinowski, S. A. and Witters, L. A. (2001) The effects of AICAR on adipocyte differentiation of 3T3-L1 cells. Biochem. Biophys. Res. Commun. 286, 852856.
  • 44
    Gregoire, F. M. (2001) Adipocyte differentiation: from fibroblast to endocrine cell. Exp. Biol. Med. 226, 9971002.
  • 45
    Kim, K. H., Song, M. J., Chung, J., Park, H., and Kim, J. B. (2005) Hypoxia inhibits adipocyte differentiation in a HDAC-independent manner. Biochem. Biophys. Res. Commun. 333, 11781184.
  • 46
    Lee, H., Kang, R., Bae, S., and Yoon, Y. (2011) AICAR, an activator of AMPK, inhibits adipogenesis via the WNT/beta-catenin pathway in 3T3-L1 adipocytes. Int. J. Mol. Med. 28, 6571.
  • 47
    Moldes, M., Zuo, Y., Morrison, R. F., Silva, D., Park, B. H., et al. (2003) Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis. Biochem. J. 376, 607613.
  • 48
    Lin, F., Ribar, T. J., and Means, A. R. (2011) The Ca2 + /calmodulin-dependent protein kinase kinase, CaMKK2, inhibits preadipocyte differentiation. Endocrinology 152, 36683679.
  • 49
    Kim, E. K., Lim, S., Park, J. M., Seo, J. K., Kim, J. H., et al. (2012) Human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by AMP-activated protein kinase. J. Cell. Physiol. 227, 16801687.
  • 50
    Vila-Bedmar, R., Lorenzo, M., and Fernandez-Veledo, S. (2010) Adenosine 5′-monophosphate-activated protein kinase-mammalian target of rapamycin cross talk regulates brown adipocyte differentiation. Endocrinology 151, 980992.
  • 51
    Giri, S., Rattan, R., Haq, E., Khan, M., Yasmin, R., et al. (2006) AICAR inhibits adipocyte differentiation in 3T3L1 and restores metabolic alterations in diet-induced obesity mice model. Nutr. Metab. 3, 31.
  • 52
    Laplante, M. and Sabatini, D. M. (2009) An emerging role of mTOR in lipid biosynthesis. Curr. Biol. 19, R1046R1052.
  • 53
    Sarbassov, D. D., Ali, S. M., Sengupta, S., Sheen, J. H., Hsu, P. P., et al. (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159168.
  • 54
    Thoreen, C. C., Kang, S. A., Chang, J. W., Liu, Q., Zhang, J., et al. (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 80238032.
  • 55
    Dibble, C. C., Elis, W., Menon, S., Qin, W., Klekota, J., et al. (2012) TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 47, 535546.
  • 56
    Inoki, K., Kim, J., and Guan, K. L. (2012) AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52, 381400.
  • 57
    Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., and Pandolfi, P. P. (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179193.
  • 58
    Roux, P. P., Ballif, B. A., Anjum, R., Gygi, S. P., and Blenis, J. (2004) Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl. Acad. Sci. USA 101, 1348913494.
  • 59
    Vander, H. E., Lee, S. I., Bandhakavi, S., Griffin, T. J., and Kim, D. H. (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316323.
  • 60
    Zhang, Z., Zhang, G., Xu, X., Su, W., and Yu, B. (2012) mTOR-rictor is the Ser473 kinase for AKT1 in mouse one-cell stage embryos. Mol. Cell. Biochem. 361, 249257.
  • 61
    Houde, V. P., Brule, S., Festuccia, W. T., Blanchard, P. G., Bellmann, K., et al. (2010) Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 59, 13381348.
  • 62
    Um, S. H., Frigerio, F., Watanabe, M., Picard, F., Joaquin, M., et al. (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200205.
  • 63
    Yeh, W. C., Bierer, B. E., and McKnight, S. L. (1995) Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells. Proc. Natl. Acad. Sci. USA 92, 1108611090.
  • 64
    Gagnon, A., Lau, S., and Sorisky, A. (2001) Rapamycin-sensitive phase of 3T3-L1 preadipocyte differentiation after clonal expansion. J. Cell. Physiol. 189, 1422.
  • 65
    Bell, A., Grunder, L., and Sorisky, A. (2000) Rapamycin inhibits human adipocyte differentiation in primary culture. Obes. Res. 8, 249254.
  • 66
    Yu, W., Chen, Z., Zhang, J., Zhang, L., Ke, H., et al. (2008) Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells. Mol. Cell. Biochem. 310, 1118.
  • 67
    Carnevalli, L. S. and Trumpp, A. (2010) Tuning mTORC1 activity for balanced self-renewal and differentiation. Dev. Cell 19, 187188.
  • 68
    Polak, P., Cybulski, N., Feige, J. N., Auwerx, J., Ruegg, M. A., et al. (2008) Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab. 8, 399410.
  • 69
    Laplante, M., Horvat, S., Festuccia, W. T., Birsoy, K., Prevorsek, Z., et al. (2012) DEPTOR cell-autonomously promotes adipogenesis, and its expression is associated with obesity. Cell Metab. 16, 202212.
  • 70
    El-Chaar, D., Gagnon, A., and Sorisky, A. (2004) Inhibition of insulin signaling and adipogenesis by rapamycin: effect on phosphorylation of p70 S6 kinase vs eIF4E-BP1. Int. J. Obes. Relat. Metab. Disord. 28, 191198.
  • 71
    Tsukiyama-Kohara, K., Poulin, F., Kohara, M., DeMaria, C. T., Cheng, A., et al. (2001) Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat. Med. 7, 11281132.
  • 72
    Le, B. O., Petroulakis, E., Paglialunga, S., Poulin, F., Richard, D., et al. (2007) Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J. Clin. Invest. 117, 387396.
  • 73
    Schieke, S. M., Phillips, D., McCoy, J. P., Jr., Aponte, A. M., Shen, R. F., et al. (2006) The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J. Biol. Chem. 281, 2764327652.
  • 74
    Cunningham, J. T., Rodgers, J. T., Arlow, D. H., Vazquez, F., Mootha, V. K., et al. (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450, 736740.
  • 75
    Chen, C., Liu, Y., Liu, R., Ikenoue, T., Guan, K. L., et al. (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 205, 23972408.
  • 76
    Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., et al. (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214226.
  • 77
    Hahn-Windgassen, A., Nogueira, V., Chen, C. C., Skeen, J. E., Sonenberg, N., et al. (2005) Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J. Biol. Chem. 280, 3208132089.
  • 78
    Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., et al. (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955968.
  • 79
    Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., et al. (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955968.
  • 80
    Powell, J. D., Pollizzi, K. N., Heikamp, E. B., and Horton, M. R. (2012) Regulation of immune responses by mTOR. Annu. Rev. Immunol. 30, 3968.
  • 81
    Kintscher, U., Hartge, M., Hess, K., Foryst-Ludwig, A., Clemenz, M., et al. (2008) T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol. 28, 13041310.
  • 82
    Peng, W., Gao, T., Yang, Z. L., Zhang, S. C., Ren, M. L., et al. (2012) Adipose-derived stem cells induced dendritic cells undergo tolerance and inhibit Th1 polarization. Cell. Immunol. 278, 152157.