SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Levine, B. and Kroemer, G. (2008) Autophagy in the pathogenesis of disease. Cell 132, 2742.
  • 2
    Mizushima, N. (2007) Autophagy: process and function. Genes Dev. 21, 28612873.
  • 3
    Kroemer, G. and Levine, B. (2008) Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9, 10041010.
  • 4
    Troncoso, R., Vicencio, J. M., Parra, V., Nemchenko, A., Kawashima, Y., et al. (2012) Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovasc. Res. 93, 320329.
  • 5
    Laron, Z. (2001) Insulin-like growth factor 1 (IGF-1): a growth hormone. Mol. Pathol. 54, 311316.
  • 6
    Becker, A. B. and Roth, R. A. (1990) Insulin receptor structure and function in normal and pathological conditions. Annu. Rev. Med. 41, 99115.
  • 7
    Sarbassov, D. D., Guertin, D. A., Ali, S. M., and Sabatini, D. M. (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 10981101.
  • 8
    Yang, W. L., Wang, J., Chan, C. H., Lee, S. W., Campos, A. D., et al. (2009) The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325, 11341138.
  • 9
    Pouyssegur, J., Volmat, V., and Lenormand, P. (2002) Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem. Pharmacol. 64, 755763.
  • 10
    Fuentes, E. N., Bjornsson, B. T., Valdes, J. A., Einarsdottir, I. E., Lorca, B., et al. (2011) The IGF-I/PI3K/Akt and the IGF-I/MAPK/ERK pathways in vivo in skeletal muscle are regulated by nutrition and contribute to somatic growth in the fine flounder. Am. J. Physiol. 300, R1532R1542.
  • 11
    Ibarra, C., Estrada, M., Carrasco, L., Chiong, M., Liberona, J. L., et al. (2004) Insulin-like growth factor-1 induces an inositol 1,4,5-trisphosphate-dependent increase in nuclear and cytosolic calcium in cultured rat cardiac myocytes. J. Biol. Chem. 279, 75547565.
  • 12
    Ibarra, C., Vicencio, J. M., Estrada, M., Lin, Y., Rocco, P., et al. (2012) Local control of nuclear Ca2+ signalling in cardiac myocytes by perinuclear microdomains of sarcolemmal igf-1 receptors. Circ. Res. 112, 236245.
  • 13
    Soonpaa, M. H. and Field, L. J. (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ. Res. 83, 1526.
  • 14
    Mehrhof, F. B., Muller, F. U., Bergmann, M. W., Li, P., Wang, Y., et al. (2001) In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation 104, 20882094.
  • 15
    Eisner, V., Criollo, A., Quiroga, C., Olea-Azar, C., Santibanez, J. F., et al. (2006) Hyperosmotic stress-dependent NFkappaB activation is regulated by reactive oxygen species and IGF-1 in cultured cardiomyocytes. FEBS Lett. 580, 44954500.
  • 16
    Chiong, M., Wang, Z. V., Pedrozo, Z., Cao, D. J., Troncoso, R., et al. (2011) Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis. 2, e244.
  • 17
    Saetrum Opgaard, O. and Wang, P. H. (2005) IGF-I is a matter of heart. Growth Horm. IGF Res. 15, 8994.
  • 18
    Kurmasheva, R. T. and Houghton, P. J. (2006) IGF-I mediated survival pathways in normal and malignant cells. Biochim. Biophys. Acta 1766, 122.
  • 19
    Foncea, R., Galvez, A., Perez, V., Morales, M. P., Calixto, A., et al. (2000) Extracellular regulated kinase, but not protein kinase C, is an antiapoptotic signal of insulin-like growth factor-1 on cultured cardiac myocytes. Biochem. Biophys. Res. Commun. 273, 736744.
  • 20
    Maggi, D., Biedi, C., Segat, D., Barbero, D., Panetta, D., et al. (2002) IGF-I induces caveolin 1 tyrosine phosphorylation and translocation in the lipid rafts. Biochem. Biophys. Res. Commun. 295, 10851089.
  • 21
    Salani, B., Briatore, L., Garibaldi, S., Cordera, R., and Maggi, D. (2008) Caveolin-1 down-regulation inhibits insulin-like growth factor-I receptor signal transduction in H9C2 rat cardiomyoblasts. Endocrinology 149, 461465.
  • 22
    Higashi, Y., Sukhanov, S., Anwar, A., Shai, S. Y., and Delafontaine, P. (2010) IGF-1, oxidative stress and atheroprotection. Trends Endocrinol. Metab. 21, 245254.
  • 23
    Jia, G., Cheng, G., Gangahar, D. M., and Agrawal, D. K. (2006) Insulin-like growth factor-1 and TNF-alpha regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol. Cell Biol. 84, 448454.
    Direct Link:
  • 24
    Murrow, L. and Debnath, J. (2012) Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu. Rev. Pathol. 8, 105137.
  • 25
    Nemchenko, A., Chiong, M., Turer, A., Lavandero, S., and Hill, J. A. (2011) Autophagy as a therapeutic target in cardiovascular disease. J. Mol. Cell Cardiol. 51, 584593.
  • 26
    Xie, M., Morales, C. R., Lavandero, S., and Hill, J. A. (2011) Tuning flux: autophagy as a target of heart disease therapy. Curr. Opin. Cardiol. 26, 216222.
  • 27
    Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., et al. (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13, 619624.
  • 28
    Taneike, M., Yamaguchi, O., Nakai, A., Hikoso, S., Takeda, T., et al. (2010) Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6, 600606.
  • 29
    Maron, B. J., Roberts, W. C., Arad, M., Haas, T. S., Spirito, P., et al. (2009) Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA 301, 12531259.
  • 30
    Kanamori, H., Takemura, G., Maruyama, R., Goto, K., Tsujimoto, A., et al. (2009) Functional significance and morphological characterization of starvation-induced autophagy in the adult heart. Am. J. Pathol. 174, 17051714.
  • 31
    Matsui, Y., Takagi, H., Qu, X., Abdellatif, M., Sakoda, H., et al. (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res. 100, 914922.
  • 32
    Cao, D. L., Wang, Z. V., Battiprolu, P. K., Jiang, N., Morales, C., et al. (2011) HDAC inhibitors attenuate cardiac hypertrophy by suppressing maladaptive autophagy. Proc. Natl. Acad. Sci. USA 108, 41234128.
  • 33
    Wang, Z. V., Rothermel, B. A., and Hill, J. A. (2010) Autophagy in hypertensive heart disease. J. Biol. Chem. 285, 85098514.
  • 34
    Rothermel, B. A. and Hill, J. A. (2007) Myocyte autophagy in heart disease: friend or foe? Autophagy 3, 632634.
  • 35
    Zhu, H., Tannous, P., Johnstone, J. L., Kong, Y., Shelton, J. M., et al. (2007) Cardiac autophagy is a maladaptive response to hemodynamic stress. J. Clin. Invest. 117, 17821793.
  • 36
    Bitto, A., Lerner, C., Torres, C., Roell, M., Malaguti, M., et al. (2010) Long-term IGF-I exposure decreases autophagy and cell viability. PLoS One 5, e12592.
  • 37
    Gu, Y., Wang, C., and Cohen, A. (2004) Effect of IGF-1 on the balance between autophagy of dysfunctional mitochondria and apoptosis. FEBS Lett. 577, 357360.
  • 38
    Sobolewska, A., Gajewska, M., Zarzynska, J., Gajkowska, B., and Motyl, T. (2009) IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway. Eur. J. Cell Biol. 88, 117130.
  • 39
    Aki, T., Yamaguchi, K., Fujimiya, T., and Mizukami, Y. (2003) Phosphoinositide 3-kinase accelerates autophagic cell death during glucose deprivation in the rat cardiomyocyte-derived cell line H9c2. Oncogene 22, 85298535.
  • 40
    Bains, M., Florez-McClure, M. L., and Heidenreich, K. A. (2009) Insulin-like growth factor-I prevents the accumulation of autophagic vesicles and cell death in Purkinje neurons by increasing the rate of autophagosome-to-lysosome fusion and degradation. J. Biol. Chem. 284, 2039820407.
  • 41
    Cardenas, C. and Foskett, J. K. (2012) Mitochondrial Ca2+ signals in autophagy. Cell Calcium 52, 4451.
  • 42
    Cardenas, C., Miller, R. A., Smith, I., Bui, T., Molgo, J., et al. (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270283.
  • 43
    Bai, X. and Jiang, Y. (2010) Key factors in mTOR regulation. Cell Mol. Life Sci. 67, 239253.
  • 44
    Laplante, M. and Sabatini, D. M. (2012) mTOR signaling in growth control and disease. Cell 149, 274293.
  • 45
    Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Ruegg, M. A., et al. (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6, 11221128.
  • 46
    Hara, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., et al. (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177189.
  • 47
    Sancak, Y., Thoreen, C. C., Peterson, T. R., Lindquist, R. A., Kang, S. A., et al. (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903915.
  • 48
    Oh, W. J. and Jacinto, E. (2011) mTOR complex 2 signaling and functions. Cell Cycle 10, 23052316.
  • 49
    Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K. L. (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648657.
  • 50
    Feng, Z. and Levine, A. J. (2010) The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol. 20, 427434.
  • 51
    Ganley, I. G., Lam du, H., Wang, J., Ding, X., Chen, S., et al. (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 1229712305.
  • 52
    Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., et al. (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 19811991.
  • 53
    Jung, C. H., Ro, S. H., Cao, J., Otto, N. M., and Kim, D. H. (2010) mTOR regulation of autophagy. FEBS Lett. 584, 12871295.
  • 54
    Settembre, C., Zoncu, R., Medina, D. L., Vetrini, F., Erdin, S., et al. (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 10951108.
  • 55
    Meley, D., Bauvy, C., Houben-Weerts, J. H., Dubbelhuis, P. F., Helmond, M. T., et al. (2006) AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem. 281, 3487034879.
  • 56
    Mihaylova, M. M. and Shaw, R. J. (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 10161023.
  • 57
    Inoki, K., Zhu, T., and Guan, K. L. (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577590.
  • 58
    Shaw, R. J. (2009) LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol. (Oxf) 196, 6580.
  • 59
    Steinberg, G. R. and Kemp, B. E. (2009) AMPK in health and disease. Physiol. Rev. 89, 10251078.
  • 60
    Hardie, D. G. (2011) AMPK and autophagy get connected. EMBO J. 30, 634635.
  • 61
    Lee, J. W., Park, S., Takahashi, Y., and Wang, H. G. (2010) The association of AMPK with ULK1 regulates autophagy. PLoS One 5, e15394.
  • 62
    Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., et al. (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214226.
  • 63
    Egan, D. F., Shackelford, D. B., Mihaylova, M. M., Gelino, S., Kohnz, R. A., et al. (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456461.
  • 64
    DeBosch, B. J. and Muslin, A. J. (2008) Insulin signaling pathways and cardiac growth. J. Mol. Cell Cardiol. 44, 855864.
  • 65
    Nagoshi, T., Yoshimura, M., Rosano, G. M., Lopaschuk, G. D., and Mochizuki, S. (2011) Optimization of cardiac metabolism in heart failure. Curr. Pharm. Des. 17, 38463853.
  • 66
    Muslin, A. J. (2011) Akt2: a critical regulator of cardiomyocyte survival and metabolism. Pediatr. Cardiol. 32, 317322.
  • 67
    Bailyes, E. M., Nave, B. T., Soos, M. A., Orr, S. R., Hayward, A. C., et al. (1997) Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: quantification of individual receptor species by selective immunoprecipitation and immunoblotting. Biochem. J. 327, 209215.
  • 68
    Slaaby, R., Schaffer, L., Lautrup-Larsen, I., Andersen, A. S., Shaw, A. C., et al. (2006) Hybrid receptors formed by insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) have low insulin and high IGF-1 affinity irrespective of the IR splice variant. J. Biol. Chem. 281, 2586925874.
  • 69
    Soos, M. A., Field, C. E., and Siddle, K. (1993) Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem. J. 290, 419426.
  • 70
    Marsh, S. A. and Davidoff, A. J. (2012) Heart smart insulin-like growth factor 1. Hypertension 59, 550551.
  • 71
    Tang, M. S., Redfors, B., Lindbom, M., Svensson, J., Ramunddal, T., et al. (2012) Importance of circulating IGF-1 for normal cardiac morphology, function and post infarction remodeling. Growth Horm. IGF Res. 22, 206211.
  • 72
    Zhang, Y., Yuan, M., Bradley, K. M., Dong, F., Anversa, P., et al. (2012) Insulin-like growth factor 1 alleviates high-fat diet-induced myocardial contractile dysfunction: role of insulin signaling and mitochondrial function. Hypertension 59, 680693.