SEARCH

SEARCH BY CITATION

References

  • 1
    Qin, L. and Tang, Z. (2002) The prognostic significance of clinical and pathological features in hepatocellular carcinoma. World J. Gastroenterol. 8, 193199.
  • 2
    Han, J., Xu, X., Qin, H., Liu, A., Fan, Z., et al. (2013) The molecular mechanism and potential role of heat shock-induced p53 protein accumulation. Mol. Cell. Biochem. 378, 161169.
  • 3
    Llovet, J. and Bruix, J. (2008) Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48, 13121327.
  • 4
    Ozturk, M. (1991) p53 Mutation in hepatocellular carcinoma after aflatoxin exposure. Lancet 338, 13561359.
  • 5
    Manavathi, B., Lo, D., Bugide, S., Dey, O., Imren, S., et al. (2012) Functional regulation of pre-B-cell leukemia homeobox interacting protein 1 (PBXIP1/HPIP) in erythroid differentiation. J. Biol. Chem. 287, 56005614.
  • 6
    Manavathi, B., Acconcia, F., Rayala, S., and Kumar, R. (2006) An inherent role of microtubule network in the action of nuclear receptor. Proc. Natl. Acad. Sci. USA 103, 1598115986.
  • 7
    Wang, X., Yang, Z., Zhang, H., Ding, L., Li, X., et al. (2008) The estrogen receptor-interacting protein HPIP increases estrogen-responsive gene expression through activation of MAPK and AKT. Biochim. Biophys. Acta 1783, 12201228.
  • 8
    Xu, X., Fan, Z., Kang, L., Han, J., Jiang, C., et al. (2013) Hepatitis B virus X protein represses miRNA-148a to enhance tumorigenesis. J. Clin. Invest. 123, 630645.
  • 9
    Minner, S., Luebke, A., Kluth, M., Bokemeyer, C., Jänicke, F., et al. (2012) High level of Ets-related gene expression has high specificity for prostate cancer: a tissue microarray study of 11 483 cancers. Histopathology 61, 445453.
  • 10
    Pan, X., Zhou, T., Tai, Y., Wang, C., Zhao, J., et al. (2011) Elevated expression of CUEDC2 protein confers endocrine resistance in breast cancer. Nat. Med. 17, 708714.
  • 11
    Veras, E., Malpica, A., Deavers, M., and Silva, E. (2009) Mitosis-specific marker phospho-histone H3 in the assessment of mitotic index in uterine smooth muscle tumors: a pilot study. Int. J. Gynecol. Pathol. 28, 316321.
  • 12
    Wong, S., Shih, R., Schoene, N., and Lei, K. (2008) Zinc-induced G2/M blockage is p53 and p21 dependent in normal human bronchial epithelial cells. Am. J. Physiol. Cell Physiol. 294, C1342C1349.
  • 13
    Markaverich, B. and Vijjeswarapu, M. (2012) Multiple sites of Type II site ligand (luteolin and BMHPC) regulation of gene expression in PC-3 cells. Int. J. Biomed. Sci. 8, 219232.
  • 14
    Hanahan, D. and Weinberg, R. A. (2000) The Hallmarks of Cancer. Cell 100, 5770.
  • 15
    Galaktionov, K. and Beach, D. (1992) Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67, 11811194.
  • 16
    O'Connor, P. (1997) Mammalian G1 and G2 phase checkpoints. Cancer Surv. 29, 151182.
  • 17
    Bai, M., Papoudou-Bai, A., Kitsoulis, P., Horianopoulos, N., Kamina, S., et al. (2005) Cell cycle and apoptosis deregulation in classical Hodgkin lymphomas. In Vivo 19, 439453.
  • 18
    Singhal, S., Vachani, A., Antin-Ozerkis, D., Kaiser, L., and Albelda, S. (2005) Prognostic implications of cell cycle, apoptosis, and angiogenesis biomarkers in non-small cell lung cancer: a review. Clin. Cancer Res. 11, 39743986.
  • 19
    Chae, S., Sohn, J., Kim, D., Choi, Y., Park, Y., et al. (2011) Overexpressions of Cyclin B1, cdc2, p16 and p53 in human breast cancer: the clinicopathologic correlations and prognostic implications. Yonsei. Med. J. 52, 445453.
  • 20
    Egloff, A., Vella, L., and Finn, O. (2006) Cyclin B1 and other cyclins as tumor antigens in immunosurveillance and immunotherapy of cancer. Cancer Res. 66, 69.
  • 21
    Weng, L., Du, J., Zhou, Q., Cheng, B., Li, J., et al. (2012) Identification of cyclin B1 and Sec62 as biomarkers for recurrence in patients with HBV-related hepatocellular carcinoma after surgical resection. Mol. Cancer. 11, 39.
  • 22
    Cheng, P., Li, Y., Yang, L., Wen, Y., Shi, W., et al. (2009) Hepatitis B virus X protein (HBx) induces G2/M arrest and apoptosis through sustained activation of cyclin B1-CDK1 kinase. Oncol. Rep. 22, 11011107.
  • 23
    Cretu, A., Sha, X., Tront, J., Hoffman, B., and Liebermann, D. (2009) Stress sensor Gadd45 genes as therapeutic targets in cancer. Cancer Ther. 7, 268276.
  • 24
    Gupta, M., Gupta, S., Balliet, A., Hollander, M., Fornace, A., et al. (2005) Hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene 24, 71707179.
  • 25
    Liebermann, D., Tront, J., Sha, X., Mukherjee, K., Mohamed-Hadley, A., et al. (2011) Gadd45 stress sensors in malignancy and leukemia. Crit. Rev. Oncol. 16, 129140.
  • 26
    Jin, S., Tong, T., Fan, W., Fan, F., Antinore, M., et al. (2002) GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene 21, 86968704.
  • 27
    Abramovich, C., Shen, W., Pineault, N., Imren, S., Montpetit, B., et al. (2000) Functional cloning and characterization of a novel nonhomeodomain protein that inhibits the binding of PBX1-HOX complexes to DNA. J. Biol. Chem. 275, 2617226177.
  • 28
    Abramovich, C., Chavez, E., Lansdorp, P., and Humphries, R. (2002) Functional characterization of multiple domains involved in the subcellular localization of the hematopoietic Pbx interacting protein (HPIP). Oncogene 21, 67666771.