SEARCH

SEARCH BY CITATION

References

  • 1
    Carling, D., Thornton, C., Woods, A., and Sanders, M. J. (2012) AMP-activated protein kinase: new regulation, new roles? Biochem J 445, 1127.
  • 2
    Eil, C., and Wool, I. G. (1971) Phosphorylation of rat liver ribosomal subunits: partial purification of two cyclic AMP activated protein kinases. Biochem Biophys Res Commun 43, 10011009.
  • 3
    Woods, A., Munday, M. R., Scott, J., Yang, X., Carlson, M., et al. (1994) Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem 269, 1950919515.
  • 4
    Carling, D., Aguan, K., Woods, A., Verhoeven, A. J., Beri, R. K., et al. (1994) Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J Biol Chem 269, 1144211448.
  • 5
    Mitchelhill, K. I., Stapleton, D., Gao, G., House, C., Michell, B., et al. (1994) Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J Biol Chem 269, 23612364.
  • 6
    Page, K. and Lange, Y. (1997) Cell adhesion to fibronectin regulates membrane lipid biosynthesis through 5'-AMP-activated protein kinase. J Biol Chem 272, 1933919342.
  • 7
    Muoio, D. M., Seefeld, K., Witters, L. A., and Coleman, R. A. (1999) AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem J 338, 783791.
  • 8
    Henin, N., Vincent, M. F., Gruber, H. E., Van den Berghe, G. (1995) Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase. FASEB J 9, 541546.
  • 9
    Makinde, A. O., Gamble, J., and Lopaschuk, G. D. (1997) Upregulation of 5'-AMP-activated protein kinase is responsible for the increase in myocardial fatty acid oxidation rates following birth in the newborn rabbit. Circ Res 80, 482489.
  • 10
    Bergeron, R., Russell, R. R., III, Young, L. H., Ren, J. M., Marcucci, M., et al. (1999) Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 276, E938944.
  • 11
    Kurth-Kraczek, E. J., Hirshman, M. F., Goodyear, L. J., and Winder, W. W. (1999) 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48, 16671671.
  • 12
    Hayashi, T., Hirshman, M. F., Fujii, N., Habinowski, S. A., Witters, L. A., et al. (2000) Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 49, 527531.
  • 13
    Fryer, L. G., Hajduch, E., Rencurel, F., Salt, I. P., Hundal, H. S., et al. (2000) Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes 49, 19781985.
  • 14
    Young, M. E., Radda, G. K., and Leighton, B. (1996) Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR-an activator of AMP-activated protein kinase. FEBS Lett 382, 4347.
  • 15
    Almeida, A., Moncada, S., and Bolanos, J. P. (2004) Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol 6, 4551.
  • 16
    Salt, I. P., Johnson, G., Ashcroft, S. J., and Hardie, D. G. (1998) AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may regulate insulin release. Biochem J 335, 533539.
  • 17
    Bolster, D. R., Crozier, S. J., Kimball, S. R., and Jefferson, L. S. (2002) AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 277, 2397723980.
  • 18
    Hahn-Windgassen, A., Nogueira, V., Chen, C. C., Skeen, J. E., Sonenberg, N., et al. (2005) Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 280, 3208132089.
  • 19
    Ravikumar, B., Vacher, C., Berger, Z., Davies, J. E., Luo, S., et al. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36, 585595.
  • 20
    Meley, D., Bauvy, C., Houben-Weerts, J. H., Dubbelhuis, P. F., Helmond, M. T., et al. (2006) AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 281, 3487034879.
  • 21
    Gallagher, E. J., and LeRoith, D. (2011) Diabetes, cancer, and metformin: connections of metabolism and cell proliferation. Ann N Y Acad Sci 1243, 5468.
  • 22
    Batandier, C., Guigas, B., Detaille, D., El-Mir, M. Y., Fontaine, E., et al. (2006) The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. J Bioenerg Biomembr 38, 3342.
  • 23
    Stephenne, X., Foretz, M., Taleux, N., van der Zon, G. C., Sokal, E., et al. (2011) Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 54, 31013110.
  • 24
    Sauer, H., Engel, S., Milosevic, N., Sharifpanah, F., and Wartenberg, M. (2012) Activation of AMP-kinase by AICAR induces apoptosis of DU-145 prostate cancer cells through generation of reactive oxygen species and activation of c-Jun N-terminal kinase. Int J Oncol 40, 501508.
  • 25
    Guigas, B., Bertrand, L., Taleux, N., Foretz, M., Wiernsperger, N., et al. (2006) 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes 55, 865874.
  • 26
    Santidrian, A. F., Gonzalez-Girones, D. M., Iglesias-Serret, D., Coll-Mulet, L., Cosialls, A. M., et al. (2010) AICAR induces apoptosis independently of AMPK and p53 through up-regulation of the BH3-only proteins BIM and NOXA in chronic lymphocytic leukemia cells. Blood 116, 30233032.
  • 27
    Garcia-Garcia, C., Fumarola, C., Navaratnam, N., Carling, D., and Lopez-Rivas, A. (2010) AMPK-independent down-regulation of cFLIP and sensitization to TRAIL-induced apoptosis by AMPK activators. Biochem Pharmacol 79, 853863.
  • 28
    Vucicevic, L., Misirkic, M., Janjetovic, K., Harhaji-Trajkovic, L., Prica, M., et al. (2009) AMP-activated protein kinase-dependent and -independent mechanisms underlying in vitro antiglioma action of compound C. Biochem Pharmacol 77, 16841693.
  • 29
    Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., et al. (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101, 33293335.
  • 30
    Shaw, M. M., Gurr, W. K., McCrimmon, R. J., Schorderet, D. F., and Sherwin, R. S. (2007) 5'AMP-activated protein kinase alpha deficiency enhances stress-induced apoptosis in BHK and PC12 cells. J Cell Mol Med 11, 286298.
  • 31
    Chhipa, R. R., Wu, Y., Mohler, J. L., Ip, C. (2010) Survival advantage of AMPK activation to androgen-independent prostate cancer cells during energy stress. Cell Signal 22, 15541561.
  • 32
    Matsui, Y., Takagi, H., Qu, X., Abdellatif, M., Sakoda, H., et al. (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100, 914922.
  • 33
    Zarrinpashneh, E., Carjaval, K., Beauloye, C., Ginion, A., Mateo, P., et al. (2006) Role of the alpha2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia. Am J Physiol Heart Circ Physiol 291, H28752883.
  • 34
    Wang, S., Song, P., and Zou, M. H. (2012) Inhibition of AMP-activated protein kinase alpha (AMPKalpha) by doxorubicin accentuates genotoxic stress and cell death in mouse embryonic fibroblasts and cardiomyocytes: role of p53 and SIRT1. J Biol Chem 287, 80018012.
  • 35
    Liu, C., Liang, B., Wang, Q., Wu, J., and Zou, M. H. (2010) Activation of AMP-activated protein kinase alpha1 alleviates endothelial cell apoptosis by increasing the expression of anti-apoptotic proteins Bcl-2 and survivin. J Biol Chem 285, 1534615355.
  • 36
    Kawasaki, H., Altieri, D. C., Lu, C. D., Toyoda, M., Tenjo, T., et al. (1998) Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res 58, 50715074.
  • 37
    Hinnis, A. R., Luckett, J. C., and Walker, R. A. (2007) Survivin is an independent predictor of short-term survival in poor prognostic breast cancer patients. Br J Cancer 96, 639645.
  • 38
    Dole, M., Nunez, G., Merchant, A. K., Maybaum, J., Rode, C. K., et al. (1994) Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma. Cancer Res 54, 32533259.
  • 39
    Piris, M. A., Pezzella, F., Martinez-Montero, J. C., Orradre, J. L., Villuendas, R., et al. (1994) p53 and bcl-2 expression in high-grade B-cell lymphomas: correlation with survival time. Br J Cancer 69, 337341.
  • 40
    Kato, K., Ogura, T., Kishimoto, A., Minegishi, Y., Nakajima, N., et al. (2002) Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene 21, 60826090.
  • 41
    Ng, T. L., Leprivier, G., Robertson, M. D., Chow, C., Martin, M. J., et al. (2012) The AMPK stress response pathway mediates anoikis resistance through inhibition of mTOR and suppression of protein synthesis. Cell Death Differ 19, 501510.
  • 42
    Zakikhani, M., Bazile, M., Hashemi, S., Javeshghani, S., Avizonis, D., et al. (2012) Alterations in cellular energy metabolism associated with the antiproliferative effects of the ATM inhibitor KU-55933 and with metformin. PLoS One 7, e49513.
  • 43
    Owen, M. R., Doran, E., and Halestrap, A. P. (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348, 607614.
  • 44
    Ben Sahra, I., Regazzetti, C., Robert, G., Laurent, K., Le Marchand-Brustel, Y., et al. (2011) Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res 71, 43664372.
  • 45
    Buler, M., Aatsinki, S. M., Izzi, V., and Hakkola, J. (2012) Metformin reduces hepatic expression of SIRT3, the mitochondrial deacetylase controlling energy metabolism. PLoS One 7, e49863.
  • 46
    Tao, R., Coleman, M. C., Pennington, J. D., Ozden, O., Park, S. H., et al. (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40, 893904.
  • 47
    Ouyang, J., Parakhia, R. A., and Ochs, R. S. (2011) Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem 286, 111.
  • 48
    Jeon, S. M., Chandel, N. S., and Hay, N. (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485, 661665.
  • 49
    Hsu, P. P., Kang, S. A., Rameseder, J., Zhang, Y., Ottina, K. A., et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 13171322.
  • 50
    Hsu, P. P. and Sabatini, D. M. (2008) Cancer cell metabolism: warburg and beyond. Cell 134, 703707.
  • 51
    Shackelford, D. B. and Shaw, R. J. (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9, 563575.
  • 52
    Shaw, R. J. (2009) Tumor suppression by LKB1: SIK-ness prevents metastasis. Sci Signal 2, pe55.
  • 53
    53. Massie, C. E., Lynch, A., Ramos-Montoya, A., Boren, J., Stark, R., et al. (2011) The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 30, 27192733. DOI: 10.1186/1742–2094–10–58.
  • 54
    Frigo, D. E., Howe, M. K., Wittmann, B. M., Brunner, A. M., Cushman, I., et al. (2011) CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells. Cancer Res 71, 528537.
  • 55
    Martinez-Reyes, I., Sanchez-Arago, M., and Cuezva, J. M. (2012) AMPK and GCN2-ATF4 signal the repression of mitochondria in colon cancer cells. Biochem J 444, 249259.
  • 56
    Hay, N. (2005) The Akt-mTOR tango and its relevance to cancer. Cancer Cell 8, 179183.
  • 57
    King, T. D., Song, L., and Jope, R. S. (2006) AMP-activated protein kinase (AMPK) activating agents cause dephosphorylation of Akt and glycogen synthase kinase-3. Biochem Pharmacol 71, 16371647.
  • 58
    Leclerc, G. M., Leclerc, G. J., Fu, G., and Barredo, J. C. (2010) AMPK-induced activation of Akt by AICAR is mediated by IGF-1R dependent and independent mechanisms in acute lymphoblastic leukemia. J Mol Signal 5, 15.
  • 59
    Tao, R., Gong, J., Luo, X., Zang, M., Guo, W., et al. (2010) AMPK exerts dual regulatory effects on the PI3K pathway. J Mol Signal 5, 1.
  • 60
    Zoncu, R., Efeyan, A., and Sabatini, D. M. (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12, 2135.
  • 61
    Easton, J. B., Kurmasheva, R. T., and Houghton, P. J. (2006) IRS-1: auditing the effectiveness of mTOR inhibitors. Cancer Cell 9, 153155.
  • 62
    Wan, X., Harkavy, B., Shen, N., Grohar, P., and Helman, L. J. (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26, 19321940.
  • 63
    Soares, H. P., Ni, Y., Kisfalvi, K., Sinnett-Smith, J., and Rozengurt, E. (2013) Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS One 8, e57289.
  • 64
    Ward, P. S. and Thompson, C. B. (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297308.
  • 65
    Bendall, S. C. and Nolan, G. P. (2012) From single cells to deep phenotypes in cancer. Nat Biotechnol 30, 639647.
  • 66
    Hanahan, D. and Coussens, L. M. (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309322.
  • 67
    Yamanaka, S. and Blau, H. M. (2010) Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704712.
  • 68
    Li, R., Liang, J., Ni, S., Zhou, T., Qing, X., et al. (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 5163.
  • 69
    Wang, X., Pan, X., and Song, J. (2010) AMP-activated protein kinase is required for induction of apoptosis and epithelial-to-mesenchymal transition. Cell Signal 22, 17901797.
  • 70
    Vazquez-Martin, A., Vellon, L., Quiros, P. M., Cufi, S., Ruiz de Galarreta, E., et al. (2012) Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells. Cell Cycle 11, 974989.
  • 71
    Liu, W., Long, Q., Chen, K., Li, S., Xiang, G., et al. (2013) Mitochondrial metabolism transition cooperates with nuclear reprogramming during induced pluripotent stem cell generation. Biochem Biophys Res Commun 431, 767771.
  • 72
    Tello, D., Balsa, E., Acosta-Iborra, B., Fuertes-Yebra, E., Elorza, A., et al. (2011) Induction of the mitochondrial NDUFA4L2 protein by HIF-1alpha decreases oxygen consumption by inhibiting Complex I activity. Cell Metab 14, 768779.
  • 73
    Mauro, C., Leow, S. C., Anso, E., Rocha, S., Thotakura, A. K., et al. (2011) NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 13, 12721279.
  • 74
    Folmes, C. D., Martinez-Fernandez, A., Faustino, R. S., Yamada, S., Perez-Terzic, C., et al. (2013) Nuclear reprogramming with c-Myc potentiates glycolytic capacity of derived induced pluripotent stem cells. J Cardiovasc Transl Res 6, 1021.
  • 75
    Panopoulos, A. D., Yanes, O., Ruiz, S., Kida, Y. S., Diep, D., et al. (2012) The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 22, 168177.
  • 76
    Rios, M., Foretz, M., Viollet, B., Prieto, A., Fraga, M., et al. AMPK activation by oncogenesis is required to maintain cancer cell proliferation in astrocytic tumors. Cancer Res, in press.
  • 77
    Rodriguez-Jimnez, F. J., Alastrue-Agudo, A., Erceg, S., Stojkovic, M., and Moreno-Manzano, V. (2012) FM19G11 favors spinal cord injury regeneration and stem cell self-renewal by mitochondrial uncoupling and glucose metabolism induction. Stem Cells 30, 22212233.
  • 78
    Suzuki, A., Lu, J., Kusakai, G., Kishimoto, A., Ogura, T., et al. (2004) ARK5 is a tumor invasion-associated factor downstream of Akt signaling. Mol Cell Biol 24, 35263535.
  • 79
    Liu, L., Ulbrich, J., Muller, J., Wustefeld, T., Aeberhard, L., et al. (2012) Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature 483, 608612.
  • 80
    Menendez, J. A., Vellon, L., Oliveras-Ferraros, C., Cufi, S., and Vazquez-Martin, A. (2011) mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle 10, 36583677.
  • 81
    Ge, W. and Ren, J. (2012) mTOR-STAT3-notch signalling contributes to ALDH2-induced protection against cardiac contractile dysfunction and autophagy under alcoholism. J Cell Mol Med 16, 616626.
  • 82
    Zeve, D., Seo, J., Suh, J. M., Stenesen, D., Tang, W., et al. (2012) Wnt signaling activation in adipose progenitors promotes insulin-independent muscle glucose uptake. Cell Metab 15, 492504.
  • 83
    Xie, Y., Awonuga, A., Liu, J., Rings, E., Puscheck, E. E., et al. Stress induces AMP-activated protein kinase-dependent loss of potency factors inhibitor of differentiation 2 and caudal-related homeodomain protein 2 in early embryos and stem cells. Stem Cells Dev, in press.
  • 84
    Pantovic, A., Krstic, A., Janjetovic, K., Kocic, J., Harhaji-Trajkovic, L., et al. (2013) Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone 52, 524531.