SEARCH

SEARCH BY CITATION

References

  • 1
    Blank, U., Karlsson, G., and Karlsson, S. (2008) Signaling pathways governing stem-cell fate. Blood 111, 492 503.
  • 2
    Dalton, S. (2013) Signaling networks in human pluripotent stem cells. Curr. Opin. Cell. Biol. 25, 241 246.
  • 3
    Clevers, H. and Nusse, R. (2012) Wnt/β-catenin signaling and disease. Cell 149, 1192 1205.
  • 4
    Schepers, A. G., Snippert, H. J., Stange, D. E., Van den Born, M., Van Es, J. H., et al. (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337, 730 735.
  • 5
    Driessens, G., Beck, B., Caauwe, A., Simons, B. D., Blanpain, C., et al. (2012) Defining the mode of tumour growth by clonal analysis. Nature 488, 527 530.
  • 6
    Yu, W-M., Liu, X., Shen, J., Jovanovic, O., Pohl, E. E., et al. (2013) Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 12, 62 74.
  • 7
    Le Belle, J. E., Orozco, N. M., Paucar, A. A., Saxe, J. P., Mottahedeh, J., et al. (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59 71.
  • 8
    Tormos, K. V., Anso, E., Hamanaka, R. B., Eisenbart, J., Joseph, J., et al. (2011) Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 14, 537 544.
  • 9
    Murphy, M. P. (2009) How mitochondria produce reactive oxygen species. Biochem. J. 417, 1 13.
  • 10
    Kobayashi, C. I. and Suda, T. (2012) Regulation of reactive oxygen species in stem cells and cancer stem cells. J. Cell. Physiol. 227, 421 430.
  • 11
    Chaudhari, P., Ye, Z., and Jang, Y-Y. (2012) Roles of reactive oxygen species in the fate of stem cells. Antioxid. Redox. Signal DOI: 10.1089/ars.2012.4963.
  • 12
    Shi, X., Zhang, Y., Zheng, J., and Pan, J. (2012) Reactive oxygen species in cancer stem cells. Antioxid. Redox. Physiol. 16, 1215 1228.
  • 13
    Kondoh, H., Lleonart, M. E., Nakashima, Y., Yokode, M., Tanaka, M., et al. (2007) A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid. Redox. Physiol. 9, 293 299.
  • 14
    Menendez, J. A., Joven, J., Cufí, S., Corominas-Faja, B., Oliveras-Ferraros, C., et al. (2013) The Warburg effect version 2.0: metabolic reprogramming of cancer stem cells. Cell Cycle 12, 1166 1179.
  • 15
    Ruckenstuhl, C., Büttner, S., Carmona-Gutierrez, D., Eisenberg, T., Kroemer, G., et al. (2009) The Warburg effect suppresses oxidative stress induced apoptosis in a yeast model for cancer. PloS One 4, e4592.
  • 16
    Gogvadze Gogvadze, V., Zhivotovsky, B., and Orrenius, S. (2010) The Warburg effect and mitochondrial stability in cancer cells. Mol. Aspects Med. 31, 60 74.
  • 17
    Montesano Gesualdi, N., Chirico, G., Pirozzi, G., Costantino, E., Landriscina, M., et al. (2007) Tumor necrosis factor-associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 10, 342 350.
  • 18
    Sreedhar, A. S. and Csermely, P. (2004) Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol. Ther. 101, 227 257.
  • 19
    Kang, B. H., Plescia, J., Dohi, T., Rosa, J., Doxsey, S. J., et al. (2007) Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131, 257 270.
  • 20
    Masuda, Y., Shima, G., Aiuchi, T., Horie, M., Hori, K., et al. (2004) Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J. Biol. Chem. 279, 42503 42515.
  • 21
    McBride, H. M., Neuspiel, M., and Wasiak, S. (2006) Mitochondria: more than just a powerhouse. Curr. Biol. 16, R551R560.
  • 22
    Green, J. C. and Reed, D. R. (1998) Mitochondria and apoptosis. Science 281, 1309 1312.
  • 23
    Vieira, H. L., Alves, P. M., Vercelli, A. (2011) Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species. Prog. Neurobiol. 93, 444 455.
  • 24
    Wang, K., Zhang, T., Dong, Q., Nice, E. C., Huang, C., et al. (2013) Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death Dis. 4, e537.
  • 25
    Parmar, K., Mauch, P., Vergilio, J-A., Sackstein, R., Down, J. D. (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl. Acad. Sci. USA 104, 5431 5436.
  • 26
    Miao, W., Xufeng, R., Park, M-R., Gu, H., Hu, L., et al. (2013) Hematopoietic stem cell regeneration enhanced by ectopic expression of ROS-detoxifying enzymes in transplant mice. Mol. Ther. J. Am. Soc. of Gene Ther. 21, 423 432.
  • 27
    Mohyeldin, A., Garzón-Muvdi, T., and Quiñones-Hinojosa, A. (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7, 150 161.
  • 28
    Cho, Y. M., Kwon, S., Pak, Y. K., Seol, H. W., Choi, Y. M., et al. (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem. Biophys. Res. Commun. 348, 1472 1478.
  • 29
    Saretzki, G., Armstrong, L., Leake, A., Lako, M., and Von Zglinicki, T. (2004) Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells 22, 962 971.
  • 30
    Nesti, C., Pasquali, L., Vaglini, F., Siciliano, G., Murri, L., et al. (2007) The role of mitochondria in stem cell biology. Biosci. Rep. 27, 165 171.
  • 31
    Landriscina, M., Laudiero, G., Maddalena, F., Amoroso, M. R., Piscazzi, A., et al. (2010). Mitochondrial chaperone Trap1 and the calcium binding protein Sorcin interact and protect cells against apoptosis induced by antiblastic agents. Cancer Res. 70, 65776586.
  • 32
    Matassa, D. S., Amoroso, M. R., Maddalena, F., Landriscina, M., and Esposito, F. (2012) New insights into TRAP1 pathway. Am. J.Cancer Res. 2, 235 248.
  • 33
    Altieri, D. C., Stein, G. S., Lian, J. B., and Languino, L. R. (2012) TRAP-1, the mitochondrial Hsp90. Biochim. Biophys. Acta 1823, 767 773.
  • 34
    Pridgeon, J. W., Olzmann, J., Chin, L-S., and Li, L. (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 5, e172.
  • 35
    Hua, G., Zhang, Q., and Fan, Z. (2007) Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis. J. Biol. Chem. 282, 20553 20560.
  • 36
    Yoshida, S., Tsutsumi, S., Muhlebach, G., Sourbier, C., Lee, M-J., et al. (2013) Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 110, E1604 E1612.
  • 37
    Sciacovelli, M., Guzzo, G., Morello, V., Frezza, C., Zheng, L., et al. (2013) The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metab. 17, 988 999.
  • 38
    Gerrits, A., Li, Y., Tesson, B. M., Bystrykh, L. V., Weersing, E., et al. (2009) Expression quantitative trait loci are highly sensitive to cellular differentiation state. PLoS Gen. 5, e1000692.
  • 39
    Klimmeck, D., Hansson, J., Raffel, S., Vakhrushev, S. Y., Trumpp, A., et al. (2012) Proteomic cornerstones of hematopoietic stem cell differentiation, distinct signatures of multipotent progenitors and myeloid committed cells. Mol. Cell. Proteomics 11, 286 302.
  • 40
    Leav, I., Plescia, J., Goel, H. L., Li, J., Jiang, Z., et al. (2010) Cytoprotective mitochondrial chaperone TRAP-1 as a novel molecular target in localized and metastatic prostate cancer. Am. J. Pathol. 176, 393 401.