• 1
    Sawers, R. G., Blokesch M., and Böck A. (2004) Anaerobic formate and hydrogen metabolism. Chapter 3.5.4. In R. Curtiss III (Editor in Chief), EcoSal--Escherichia coli and Salmonella. Cellular and Molecular Biology. ASM Press, Washington, DC. [Online.]
  • 2
    Trchounian, K., Poladyan, A., Vassilian, A., and Trchounian, A. (2012) Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: dependence on fermentation substrate, pH and FOF1-ATPase. Crit. Rev. Biochem. Mol. Biol. 47, 236249.
  • 3
    Poladyan A., Avagyan A., Vassilian A., and Trchounian A. (2013) Oxidative and reductive routes of glycerol and glucose fermentation by Escherichia coli batch cultures and their regulation by oxidizing and reducing reagents at different pHs. Curr. Microbiol. 66, 4955.
  • 4
    Trchounian, A. (2013) Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology. Crit. Rev. Biotechnol. DOI: 10.3109/07388551.2013.809047
  • 5
    Andrews, S. C., Berks, B. C., Mcclay, J., Ambler, A., Quail, M. A., et al. (1997) A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143, 36333647.
  • 6
    Kim, Y. L., Lee, H. S., Kim, E. S., Bae, S. S., Lim, J. K., et al. (2010). Formate-driven growth coupled with H2 production. Nature 467, 352355.
  • 7
    Forzi, L., and Sawers, R. G. (2007) Maturation of [NiFe]-hydrogenases in Escherichia coli. Biometals 20, 565578.
  • 8
    Odom, J. M., and Peck, H. D. Jr (1981) Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol. Lett. 12, 4750.
  • 9
    Kulkarni, G., Kridelbaugh, D. M., Guss, A. M., and Metcalf, W. W. (2009) Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri. Proc. Natl. Acad. Sci. USA 106, 1591515920.
  • 10
    Trchounian, K., and Trchounian, A. (2009) Hydrogenase 2 is most and hydrogenase 1 is less responsible for H2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH. Int. J. Hydrogen Energy 34, 88398845.
  • 11
    Trchounian, K., Sanchez-Torres, V., Wood, T. K., and Trchounian, A. (2011) Escherichia coli hydrogenase activity and H2 production under glycerol fermentation at a low pH. Int J Hydrogen Energy 36, 43234331.
  • 12
    Lukey, M. J., Parkin, A., Roessler, M. M., Murphy, B. J., Harmer, J., et al. (2010) How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J. Biol. Chem. 285, 39283938.
  • 13
    Redwood, M. D., Mikheenko, I. P., Sargent, F., and Macaskie, L. E. (2008) Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol. Lett. 278, 4855.
  • 14
    King, P. W., and Przybyla, A. E. (1999) Response of hya expression to external pH in Escherichia coli. J. Bacteriol. 181, 52505256.
  • 15
    Brondsted, L., and Atlung, T. (1994) Anaerobic regulation of the hydrogenase 1 (hya) operon of Escherichia coli. J. Bacteriol. 176, 54235428.
  • 16
    Richard, D. J., Sawers, G., Sargent, F., McWalter, L., and Boxer, D. H. (1999) Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. Microbiology 145, 29032912.
  • 17
    Pinske, C., McDowall, J. S., Sargent, F., and Sawers R. G. (2012) Analysis of hydrogenase 1 levels reveals an intimate link between carbon and hydrogen metabolism in Escherichia coli K-12. Microbiology 158, 856868.
  • 18
    Hayes, E. T., Wilks, J. C., Sanfilippo, P., Yohannes, E., Tate, D. P., et al. (2006) Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiology 6, 89.
  • 19
    Noguchi, K., Riggins, D. P., Eldahan, K. C., Kitko, R. D., and Slonczewski, J. L. (2010) Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli. PLoS ONE 5, e10132.
  • 20
    Trchounian, A., Ohanjanyan, Y., Bagramyan, K., Zakharyan, E., Vardanian, V., et al. (1998) Relationship of the Escherichia coli TrkA system of potassium ion uptake with the F0F1-ATPase under growth conditions without anaerobic or aerobic respiration. Biosci. Rep. 18, 143154.
  • 21
    Dubini, A., Pye, R. L., Jack, R. L., Palmer, T., and Sargent, F. (2002). How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli. Int. J. Hydrogen Energy 27, 14131420.
  • 22
    Laurinavichene, T. V., Chanal, A., Wu, L. F., and Tsygankov, A. A. (2001) Effect of O2, H2 and redox potential on the activity and synthesis of hydrogenase 2 in Escherichia coli. Res. Microbiol. 152, 793798.
  • 23
    Blokesh, M., and Bock, A. (2006) Properties of the [NiFe]-hydrogenase maturation protein HypD. FEBS Lett. 580, 40554058.
  • 24
    Menon, N. K., Chatelus, C. Y., Dervartanian, M., Wendt, J. C., Shanmugam, K. T., et al. (1994) Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J. Bacteriol. 176, 44164423.
  • 25
    Laurinavichene, T. V., Zorin, N. A., and Tsygankov, A. A. (2002) Effect of redox potential on activity of hydrogenase 1 or hydrogenase 2 in Escherichia coli. Arch. Microbiol. 178, 437442.
  • 26
    Pinske, C., Jaroschinsky, M., Sargent, F., and Sawers, R. G. (2012) Zymographic differentiation of [Ni-Fe]-hydrogenases 1, 2 and 3 of Escherichia coli K-12. BMC Microbiol. 12, 134.
  • 27
    Sawers, R. G., Ballantine, S. P., and Boxer, D. H. (1985) Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J. Bacteriol. 164, 13241331.
  • 28
    Fritsch, J., Lenz, O., and Friedrich, B. (2013) Structure, function and biosynthesis of O2-tolerant hydrogenases. Nature Rev. Microbiol. 11, 106114.
  • 29
    Volbeda, A., Darnault, C., Parkin, A., Sargent, F., Armstrong, F. A., et al. (2013) Crystal structure of the O2-tolerant membrane-bound hydrogenase 1 from Escherichia coli in complex with its cognate cytochrome b. Structure 21, 184190.
  • 30
    Sauter, M., Bohm, R., and Bock, A. (1992) Mutational analysis of the operon (hyc) determing hydrogenase 3 formation in Escherichia coli. Mol. Microbiol. 6, 15231532.
  • 31
    Rossmann, R., Sawers, G., and Bock, A. (1991) Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol. Microbiol. 5, 28072814.
  • 32
    Bagramyan, K., Mnatskanyan, N., Poladian, A., Vassilian, A., and Trchounian, A. (2002). The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Lett. 516, 172178.
  • 33
    Axley, M. J., Grahame, D. A., and Stadtman, T. C. (1990) Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component. J. Biol. Chem. 265, 1821318218.
  • 34
    Hakobyan, M., Sargsyan, H., and Bagramyan. K. (2005). Proton translocation coupled to formate oxidation in anaerobically grown fermenting Escherichia coli. Biophys. Chem. 115, 5561.
  • 35
    Butland, G., Peregrín-Alvarez, J. M., Li, J., Yang, W., Yang, X., et al. (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531537.
  • 36
    Self, W. T., Hasona, A., and Shanmugam, K. T. (2004) Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzyme in Escherichia coli. J. Bacteriol. 186, 580587.
  • 37
    Pecher, A., Zinoni, F., Jatisatienr, C., Wirth, R., Hennecke, H., et al. (1983) On the redox control of synthesis of anaerobically induced enzymes in enterobacteriaceae. Arch. Microbiol. 136, 131136.
  • 38
    Mnatsakanyan, N., Bagramyan, K., and Trchounian, A. (2004) Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by Escherichia coli formate hydrogenlyase at acidic pH and in the presence of external formate. Cell Biochem. Biophys. 41, 357366.
  • 39
    Bagramyan, K., Mnatsakanyan, N., and Trchounian, A. (2003) Formate increases the F0F1-ATPase activity in Escherichia coli membrane vesicles. Biochem. Biophys. Res. Commun. 306, 361365.
  • 40
    Trchounian, A. (2004) Escherichia coli proton-translocating F0F1-ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation-reduction under fermentation. Biochem. Biophys. Res. Commun. 315, 10511057.
  • 41
    Trchounian, A., Bagramyan, K., and Poladyan, A. (1997) Formate hydrogenlyase is needed for proton-potassium exchange through the F0F1-ATPase and the TrkA system in anaerobically grown and glycolysing Escherichia coli. Curr. Microbiol. 35, 201206.
  • 42
    Trchounian, K., Pinske, C., Sawers, R. G., and Trchounian, A. (2011) Dependence on the FOF1-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases 1 and 2 during glucose and glycerol fermentation at high and low pH in Escherichia coli. J. Bioenerg. Biomembr. 43, 645650.
  • 43
    Maeda, T., Sanchez-Torres, V., and Wood, T. K. (2007) Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl. Microbiol. Biotechnol. 76, 10361042.
  • 44
    Trchounian, K., Pinske, C., Sawers, G., and Trchounian, A. (2012) Characterization of Escherichia coli NiFe-hydrogenase distribution during fermentative growth at different pHs. Cell Biochem. Biophys. 62, 433440.
  • 45
    Schemidt, R. A., Brauning, C. K., Bouvier, A., and Brusilow, W. S. (1996) Localization of a conformational energy-coupling determinant near the C terminus of the beta subunit of the F1F0-ATPase. J. Biol. Chem. 271, 3339033393.
  • 46
    Schemidt, R. A., Qu, J., Williams, J. R., and Brusilow, W. S. (1998) Effects of carbon source on expression of F0 genes and on the stoichiometry of the c subunit in the F1F0-ATPase of Escherichia coli. J. Bacteriol. 180, 32053208.
  • 47
    Trchounian, A., Bagramyan, K., Ogandjanian, Y., Vassilian, A., and Zakharian, E. (1996) An electrochemical study of energy-dependent potassium accumulation in E. coli Part 14. Comparison of K+ uptake characteristics in anaerobically grown cells performing glycolysis or nitrate/nitrite respiration: role of the respiratory chain. Bioelectrochem. Bioenerg. 39, 1319.
  • 48
    Riondet, C., Cachon, R., Wache, Y., Alcaraz, G., and Divies, C. (2000) Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J. Bacteriol. 182, 620626.
  • 49
    Mnatsakanyan, N., Bagramyan, K., Vassilian, A., Nakamoto, R. K., and Trchounian, A. (2002) FO cysteine, bCys21, in the Escherichia coli ATP synthase is involved in regulation of potassium uptake and molecular hydrogen production in anaerobic conditions. Biosci. Rep. 22, 421430.
  • 50
    Bald, D., Noji, H., Yoshida, M., Hirono-Hara, Y., and Hisabori, T. (2001) Redox regulation of the rotation of F1-ATP synthase. J. Biol. Chem. 276, 3950539507.
  • 51
    Kim, Y., Konno, H., Sugano, Y., and Hisabori, T. (2011) Redox regulation of rotation of the cyanobacterial F1-ATPase containing thiol regulation switch. J. Biol. Chem. 286, 90719078.
  • 52
    Martirosov, S. M. (1990) Direct transfer of energy by dithiol-disulfide interconversion. J. Theor. Biol. 144, 6973.
  • 53
    Futatsugi, L., Saito, H., Kakegawa, T., and Kobayashi, H. (1997) Growth of an Escherichia coli mutant deficient in respiration. FEMS Microbiol. Lett. 156, 141145.
  • 54
    Mnatsakanyan, N., Vassilian, A., Navasardyan, L., Bagramyan, K., and Trchounian, A. (2002) Regulation of Escherichia coli formate hydrogenlyase activity by formate at alkaline pH. Curr. Microbiol. 45, 281286.
  • 55
    Beyer, L., Doberenz, C., Falke, D., Hunger, D., Suppmann, B., et al. (2013) Coordinating FocA and pyruvate formate-lyase synthesis in Escherichia coli: preferential translocation of formate over other mixed-acid fermentation products. J. Bacteriol. 195, 14281435.
  • 56
    Blbulyan, S., Avagyan, A., Poladyan, A., and Trchounian, A. (2011) Role of Escherichia coli different hydrogenases in H+ efflux and the FOF1-ATPase activity during glycerol fermentation at different pH. Biosci. Rep. 31, 179184.
  • 57
    Hackstein, J. H., Akhmanova, A., Boxma, B., Harhangi, H. R., and Voncken, F. G. (1999) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol. 7, 441447.
  • 58
    Sapra, R., Bagramyan, K., and Adams, M. W. (2003) A simple energy-conserving system: proton reduction coupled to proton translocation. Proc. Natl. Acad. Sci. USA 100, 7545 – 7550.
  • 59
    Schut, G. J., Boyd, E. S., Peters, J. W., and Adams, M. W. (2013) The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiol Rev. 37, 182203.
  • 60
    Trchounian, K., Soboh, B., Sawers, R. G., and Trchounian, A. (2013) Contribution of hydrogenase 2 to stationary phase H2 production by Escherichia coli during fermentation of glycerol. Cell Biochem. Biophys. 66, 103108.