SEARCH

SEARCH BY CITATION

References

  • 1
    World Health Organization (2011) Fact sheet No. 310- The Top 10 Causes of Death. World Health Organization.
  • 2
    Lopaschuk, G. D., Ussher, J. R., Folmes, C. D., Jaswal, J. S., and Stanley, W. C. (2010) Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 90, 207 258.
  • 3
    Neubauer, S. (2007) The failing heart—an engine out of fuel. N. Engl. J. Med. 356, 1140 1151.
  • 4
    Beer, M., Seyfarth, T., Sandstede, J., Landschutz, W., Lipke, C., et al. (2002) Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J. Am. Coll. Cardiol. 40, 1267 1274.
  • 5
    Tian, R., Nascimben, L., Kaddurah-Daouk, R., and Ingwall, J. S. (1996) Depletion of energy reserve via the creatine kinase reaction during the evolution of heart failure in cardiomyopathic hamsters. J. Mol Cell. Cardiol. 28, 755 765.
  • 6
    Ingwall, J. S. and Weiss, R. G. (2004) Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ. Res. 95, 135 145.
  • 7
    Finck, B. N., Lehman, J. J., Leone, T. C., Welch, M. J., Bennett, M. J., et al. (2002) The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. J. Clin. Invest. 109, 121 130.
  • 8
    Ussher, J. R., Koves, T. R., Jaswal, J. S., Zhang, L., Ilkayeva, O., et al. (2009) Insulin-stimulated cardiac glucose oxidation is increased in high-fat diet-induced obese mice lacking malonyl CoA decarboxylase. Diabetes 58, 1766 1775.
  • 9
    Stanley, W. C., Dabkowski, E. R., Ribeiro, R. F., Jr., and O'Connell, K. A. (2012) Dietary fat and heart failure: moving from lipotoxicity to lipoprotection. Circ. Res. 110, 764 776.
  • 10
    Folmes, C. D., Sowah, D., Clanachan, A. S., and Lopaschuk, G. D. (2009) High rates of residual fatty acid oxidation during mild ischemia decrease cardiac work and efficiency. J. Mol. Cell. Cardiol. 47, 142 148.
  • 11
    Lei, B., Lionetti, V., Young, M. E., Chandler, M. P., d'Agostino, C., et al. (2004) Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J. Mol. Cell. Cardiol. 36, 567 576.
  • 12
    Stanley, W. C., Morgan, E. E., Huang, H., McElfresh, T. A., Sterk, J. P., et al. (2005) Malonyl-CoA decarboxylase inhibition suppresses fatty acid oxidation and reduces lactate production during demand-induced ischemia. Am. J. Physiol. 289, H2304 H2309.
  • 13
    Dyck, J. R., Cheng, J. F., Stanley, W. C., Barr, R., Chandler, M. P., et al. (2004) Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ. Res. 94, e78 e84.
  • 14
    Masoud, W. G., Ussher, J. R., Wang, W., Jaswal, J. S., Wagg, C. S., et al. (2014) Lopaschuk, Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovasc. Res. 101, 30 38.
  • 15
    Ussher, J. R., Wang, W., Gandhi, M., Keung, W., Samokhvalov, V., et al. (2012) Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc. Res. 94, 359 369.
  • 16
    Dyck, J. R., Hopkins, T. A., Bonnet, S., Michelakis, E. D., Young, M. E., et al. (2006) Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury. Circulation 114, 1721 1728.
  • 17
    Su, X. and Abumrad, N. A. (2009) Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol. Metab. 20, 72 77.
  • 18
    Koonen, D. P., Glatz, J. F., Bonen, A., and Luiken, J. J. (2005) Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim. Biophys. Acta 1736, 163 180.
  • 19
    Nickerson, J. G., Momken, I., Benton, C. R., Lally, J., Holloway, G. P., et al. (2007) Protein-mediated fatty acid uptake: regulation by contraction, AMP-activated protein kinase, and endocrine signals. Appl. Physiol. Nutr. Metab. 32, 865 873.
  • 20
    Harmon, C. M. and Abumrad, N. A. (1993) Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J. Membr. Biol. 133, 43 49.
  • 21
    McGarry, J. D., Mannaerts, G. P., and Foster, D. W. (1977) A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J. Clin. Invest. 60, 265 270.
  • 22
    McGarry, J. D., Leatherman, G. F., and Foster, D. W. (1978) Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J. Biol. Chem. 253, 4128 4136.
  • 23
    Paulson, D. J., Ward, K. M., and Shug, A. L. (1984) Malonyl CoA inhibition of carnitine palmityltransferase in rat heart mitochondria. FEBS Lett. 176, 381 384.
  • 24
    Kolwicz, S. C., Jr., Olson, D. P., Marney, L. C., Garcia-Menendez, L., Synovec, R. E., et al. (2012) Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ. Res. 111, 728 738.
  • 25
    Hardie, D. G. (1989) Regulation of fatty acid synthesis via phosphorylation of acetyl-CoA carboxylase. Prog. Lipid Res. 28, 117 146.
  • 26
    Winder, W. W. and Hardie, D. G. (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol. 270, E299 E304.
  • 27
    Oka, T., Lam, V. H., Zhang, L., Keung, W., Cadete, V. J., et al. (2012) Cardiac hypertrophy in the newborn delays the maturation of fatty acid β-oxidation and compromises postischemic functional recovery. Am. J. Physiol. Heart Circ. Physiol. 302, H1784 H1794.
  • 28
    Lopaschuk, G. D. and Jaswal, J. S. (2010) Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J. Cardiovasc. Pharmacol. 56, 130 140.
  • 29
    Sambandam, N., Steinmetz, M., Chu, A., Altarejos, J. Y., Dyck, J. R., et al. (2004) Malonyl-CoA decarboxylase (MCD) is differentially regulated in subcellular compartments by 5′AMP-activated protein kinase (AMPK). Studies using H9c2 cells overexpressing MCD and AMPK by adenoviral gene transfer technique. Eur. J. Biochem. 271, 2831 2840.
  • 30
    Campbell, F. M., Kozak, R., Wagner, A., Altarejos, J. Y., Dyck, J. R., et al. (2002) A role for peroxisome proliferator-activated receptor alpha (PPARα) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARα are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J. Biol. Chem. 277, 4098 4103.
  • 31
    Young, M. E., Goodwin, G. W., Ying, J., Guthrie, P., Wilson, C. R., et al. (2001) Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids. Am. J. Physiol. Endocrinol. Metab. 280, E471 E479.
  • 32
    Lopaschuk, G. D., Witters, L. A., Itoi, T., Barr, R., and Barr, A. (1994) Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. J. Biol. Chem. 269, 25871 25878.
  • 33
    Liu, Q., Docherty, J. C., Rendell, J. C. T., Clanachan, A. S., and Lopaschuk, G. D. (2002) High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J. Am. Coll. Cardiol. 39, 718 725.
  • 34
    Randle, P. J. (1998) Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab. Rev. 14, 263 283.
  • 35
    Sugden, M. C. and Holness, M. J. (2003) Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am. J. Physiol. Endocrinol. Metab. 284, E855 E862.
  • 36
    Jaswal, J. S., Keung, W., Wang, W., Ussher, J. R., and Lopaschuk, G. D. (2011) Targeting fatty acid and carbohydrate oxidation—a novel therapeutic intervention in the ischemic and failing heart. Biochim. Biophys. Acta 1813, 1333 1350.
  • 37
    Randle, P. J., England, P. J., and Denton, R. M. (1970) Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart. Biochem. J. 117, 677 695.
  • 38
    How, O. J., Aasum, E., Kunnathu, S., Severson, D. L., Myhre, E. S., et al. (2005) Influence of substrate supply on cardiac efficiency, as measured by pressure–volume analysis in ex vivo mouse hearts. Am. J. Physiol. Heart Circ. Physiol. 288, H2979 H2985.
  • 39
    Conway, M. A., Allis, J., Ouwerkerk, R., Niioka, T., Rajagopalan, B., et al. (1991) Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet 338, 973 976.
  • 40
    Nascimben, L., Friedrich, J., Liao, R., Pauletto, P., Pessina, A. C., et al. (1995) Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure. Circulation 91, 1824 1833.
  • 41
    Neubauer, S., Remkes, H., Spindler, M., Horn, M., Wiesmann, F., et al. (1999) Downregulation of the Na+–creatine cotransporter in failing human myocardium and in experimental heart failure. Circulation 100, 1847 1850.
  • 42
    Kato, T., Niizuma, S., Inuzuka, Y., Kawashima, T., Okuda, J., et al. (2010) Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ. Heart Fail. 3, 420 430.
  • 43
    Degens, H., de Brouwer, K. F., Gilde, A. J., Lindhout, M., Willemsen, P. H., et al. (2006) Cardiac fatty acid metabolism is preserved in the compensated hypertrophic rat heart. Basic Res. Cardiol. 101, 17 26.
  • 44
    Van Bilsen, M., Smeets, P. J. H., Gilde, A. J., van der Vusse, G. J, (2004) Metabolic remodelling of the failing heart: the cardiac burn-out syndrome? Cardiovasc. Res. 61, 218 226.
  • 45
    Allard, M. F., Schonekess, B. O., Henning, S. L., English, D. R., and Lopaschuk, G. D. (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am. J. Physiol. Heart Circ. Physiol. 267, H742 H750.
  • 46
    Schonekess, B. O., Allard, M. F., Henning, S. L., Wambolt, R. B., and Lopaschuk, G. D. (1997) Contribution of glycogen and exogenous glucose to glucose metabolism during ischemia in the hypertrophied rat heart. Circ. Res. 81, 540 549.
  • 47
    Wambolt, R. B., Henning, S. L., English, D. R., Dyachkova, Y., Lopaschuk, G. D., et al. (1999) Glucose utilization and glycogen turnover are accelerated in hypertrophied rat hearts during severe low-flow ischemia. J. Mol. Cell. Cardiol. 31, 493 502.
  • 48
    El Alaoui-Talibi, Z., Guendouz, A., Moravec, M., and Moravec, J. (1997) Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-l-carnitine. Am. J. Physiol. Heart Circ. Physiol. 272, H1615 H1624.
  • 49
    El Alaoui-Talibi, Z., Landormy, S., Loireau, A., and Moravec, J. (1992) Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am. J. Physiol. Heart Circ. Physiol. 262, H1068 H1074.
  • 50
    Aitman, T. J., Glazier, A. M., Wallace, C. A., Cooper, L. D., Norsworthy, P. J., et al. (1999) Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat. Genet. 21, 76 83.
  • 51
    Lopaschuk, G. D. and Tsang, H. (1987) Metabolism of palmitate in isolated working hearts from spontaneously diabetic “BB” Wistar rats. Circ. Res. 61, 853 858.
  • 52
    Mazumder, P. K., O'Neill, B. T., Roberts, M. W., Buchanan, J., Yun, U. J., et al. (2004) Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes 53, 2366 2374.
  • 53
    Peterson, L. R., Herrero, P., Schechtman, K. B., Racette, S. B., Waggoner, A. D., et al. (2004) Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109, 2191 2196.
  • 54
    Carley, A. N. and Severson, D. L. (2005) Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim. Biophys. Acta 1734, 112 126.
  • 55
    Herrero, P., Peterson, L. R., McGill, J. B., Matthew, S., Lesniak, D., et al. (2006) Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J. Am. Coll. Cardiol. 47, 598 604.
  • 56
    Sakamoto, J., Barr, R. L., Kavanagh, K. M., and Lopaschuk, G. D. (2000) Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart. Am. J. Physiol. Heart Circ. Physiol. 278, H1196 H1204.
  • 57
    Buchanan, J., Mazumder, P. K., Hu, P., Chakrabarti, G., Roberts, M. W., et al. (2005) Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146, 5341 5349.
  • 58
    Zhang, L., Ussher, J. R., Oka, T., Cadete, V. J., Wagg, C., et al. (2011) Cardiac diacylglycerol accumulation in high fat-fed mice is associated with impaired insulin-stimulated glucose oxidation. Cardiovasc. Res. 89, 148 156.
  • 59
    Kudo, N., Barr, A. J., Barr, R. L., Desai, S., and Lopaschuk, G. D. (1995) High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J. Biol. Chem. 270, 17513 17520.
  • 60
    Hall, J. L., Stanley, W. C., Lopaschuk, G. D., Wisneski, J. A., Pizzurro, R. D., et al. (1996) Impaired pyruvate oxidation but normal glucose uptake in diabetic pig heart during dobutamine-induced work. Am. J. Physiol. 271, H2320 H2329.
  • 61
    Folmes, C. D., Clanachan, A. S., and Lopaschuk, G. D. (2006) Fatty acids attenuate insulin regulation of 5′-AMP-activated protein kinase and insulin cardioprotection after ischemia. Circ. Res. 99, 61 68.
  • 62
    Keung, W., Cadete, V. J., Palaniyappan, A., Jablonski, A., Fischer, M., et al. (2011) Intracerebroventricular leptin administration differentially alters cardiac energy metabolism in mice fed a low-fat and high-fat diet. J. Cardiovasc. Pharmacol. 57, 103 113.
  • 63
    Chandler, M. P., Kerner, J., Huang, H., Vazquez, E., Reszko, A., et al. (2004) Moderate severity heart failure does not involve a downregulation of myocardial fatty acid oxidation. Am. J. Physiol. Heart Circ. Physiol. 287, H1538 H1543.
  • 64
    Zhabyeyev, P., Gandhi, M., Mori, J., Basu, R., Kassiri, Z., et al. (2013) Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc. Res. 97, 676 685.
  • 65
    Osorio, J. C., Stanley, W. C., Linke, A., Castellari, M., Diep, Q. N., et al. (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-α in pacing-induced heart failure. Circulation 106, 606 612.
  • 66
    Lee, G. Y., Kim, N. H., Zhao, Z. S., Cha, B. S., and Kim, Y. S. (2004) Peroxisomal-proliferator-activated receptor α activates transcription of the rat hepatic malonyl-CoA decarboxylase gene: a key regulation of malonyl-CoA level. Biochem. J. 378, 983 990.
  • 67
    Kim, H. J., Zhao, Z. S., Lee, Y. J., Shim, W. S., Kim, S. K., et al. (2006) Tissue-specific regulation of malonyl-CoA decarboxylase activity in OLETF rats. Diabetes Obes. Metab. 8, 175 183.
  • 68
    Samokhvalov, V., Ussher, J. R., Fillmore, N., Armstrong, I. K., Keung, W., et al. (2012) Inhibition of malonyl-CoA decarboxylase reduces the inflammatory response associated with insulin resistance. Am. J. Physiol. Endocrinol. Metab. 303, E1459 E1468.
  • 69
    Essop, M. F., Camp, H. S., Choi, C. S., Sharma, S., Fryer, R. M., et al. (2008) Reduced heart size and increased myocardial fuel substrate oxidation in ACC2 mutant mice. Am. J. Physiol. Heart Circ. Physiol. 295, H256 H265.
  • 70
    Stanley, W. C., Recchia, F. A., and Lopaschuk, G. D. (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85, 1093 1129.
  • 71
    Fragasso, G., Piatti Md, P. M., Monti, L., Palloshi, A., Setola, E., et al. (2003) Short- and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathy. Am. Heart J. 146, E18.
  • 72
    Fragasso, G., Perseghin, G., De Cobelli, F., Esposito, A., Palloshi, A., et al. (2006) Effects of metabolic modulation by trimetazidine on left ventricular function and phosphocreatine/adenosine triphosphate ratio in patients with heart failure. Eur. Heart J. 27, 942 948.
  • 73
    Fragasso, G., Palloshi, A., Puccetti, P., Silipigni, C., Rossodivita, A., et al. (2006) A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J. Am. Coll. Cardiol. 48, 992 998.
  • 74
    Lee, L., Campbell, R., Scheuermann-Freestone, M., Taylor, R., Gunaruwan, P., et al. (2005) Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation 112, 3280 3288.
  • 75
    Schmidt-Schweda, S. and Holubarsch, C. (2000) First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin. Sci. (Lond) 99, 27 35.
  • 76
    Cheng, J. F., Huang, Y., Penuliar, R., Nishimoto, M., Liu, L., et al. (2006) Discovery of potent and orally available malonyl-CoA decarboxylase inhibitors as cardioprotective agents. J. Med. Chem. 49, 4055 4058.
  • 77
    Cheng, J.-F., Chen, M., Wallace, D., Tith, S., Haramura, M., et al. (2006) Synthesis and structure–activity relationship of small-molecule malonyl coenzyme A decarboxylase inhibitors. J. Med. Chem. 49, 1517 1525.
  • 78
    Saddik, M., Gamble, J., Witters, L. A., and Lopaschuk, G. D. (1993) Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J. Biol. Chem. 268, 25836 25845.