SEARCH

SEARCH BY CITATION

References

  • 1
    Wong, R. S. (2011) Mesenchymal stem cells: angels or demons? J. Biomed. Biotechnol. 2011, 459510.
  • 2
    Salem, H. K., and Thiemermann, C. (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28, 585596.
  • 3
    Motaln, H., Schichor C., and Lah, T. T. (2010) Human mesenchymal stem cells and their use in cell-based therapies. Cancer 116, 25192530.
  • 4
    Puglisi, M. A., Tesori, V., Lattanzi, W., Piscaglia, A. C., Gasbarrini, G. B., et al. (2011) Therapeutic implications of mesenchymal stem cells in liver injury. J. Biomed. Biotechnol. 2011, 860578.
  • 5
    Klopp, A. H., Gupta, A., Spaeth, E., Andreeff, M., and Marini, F. (2011) Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 29, 1119.
  • 6
    Matthay, M. A., Thompson, B. T., Read, E. J., McKenna, D. H., Jr., Liu, K. D., et al. (2010) Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest 138, 965972.
  • 7
    Jorgensen, C., and Noel, D. (2011) Mesenchymal stem cells in osteoarticular diseases. Regen. Med. 6, 4451.
  • 8
    Williams, A. R., and Hare, J. M. (2011) Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ. Res. 109, 923940.
  • 9
    Hodgkinson, C. P., Gomez, J. A., Mirotsou, M., and Dzau, V. J. (2010) Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum. Gene Ther. 21, 15131526.
  • 10
    Hou, D., Youssef, E. A., Brinton, T. J., Zhang, P., Rogers, P., et al. (2005) Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112, I150I156.
  • 11
    Freyman, T., Polin, G., Osman, H., Crary, J., Lu, M., et al. (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur. Heart J. 27, 11141122.
  • 12
    Wang, F. W., Wang, Z., Zhang, Y. M., Du, Z. X., Zhang, X. L., et al. (2013) Protective effect of melatonin on bone marrow mesenchymal stem cells against hydrogen peroxide-induced apoptosis in vitro. J. Cell Biochem. 114, 23462355.
  • 13
    Kiani, A. A., Kazemi, A., Halabian, R., Mohammadipour, M., Jahanian-Najafabadi, A., et al. (2013) HIF-1α confers resistance to induced stress in bone marrow-derived mesenchymal stem cells. Arch. Med. Res. 44, 185193.
  • 14
    Fang, Z., Yang, Q., Luo, W., Li, G. H., Xiao, J., et al. (2013) Differentiation of GFP-Bcl-2-engineered mesenchymal stem cells towards a nucleus pulposus-like phenotype under hypoxia in vitro. Biochem. Biophys. Res. Commun. 432, 444450.
  • 15
    Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215233.
  • 16
    Hupkes, M., Sotoca, A. M., Hendriks, J. M., van Zoelen, E. J., and Dechering, K. J. (2014) MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells. BMC Mol. Biol. 15, 1.
  • 17
    Trohatou, O., Zagoura, D., Bitsika, V., Pappa, K. I., Antsaklis, A., et al. (2014) Sox2 suppression by miR-21 governs human mesenchymal stem cell properties. Stem Cells Transl. Med. 3, 5468.
  • 18
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement. Cytotherapy 8, 315317.
  • 19
    Plotnikov, A. N., Shlapakova, I., Szabolcs, M. J., Danilo, P., Lorell, B. H., et al. (2007) Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation 116, 706713.
  • 20
    Kanafi, M. M., Ramesh, A., Gupta, P. K., and Bhonde, R. R. (2013) Influence of hypoxia, high glucose, and low serum on the growth kinetics of mesenchymal stem cells from deciduous and permanent teeth. Cells Tissues Organs 198, 198208.
  • 21
    Chen, Z., Li, D., Cheng, Q., Ma, Z., Jiang, B., et al. (2014) MicroRNA-203 inhibits the proliferation and invasion of U251 glioblastoma cells by directly targeting PLD2. Mol. Med. Rep. 9, 503508.
  • 22
    He, J., Deng, Y., Yang, G., and Xie, W. (2013) MicroRNA-203 down-regulation is associated with unfavorable prognosis in human glioma. J. Surg. Oncol. 108, 121125.
  • 23
    Wang, C., Zheng, X., Shen, C., and Shi, Y. (2012) MicroRNA-203 suppresses cell proliferation and migration by targeting BIRC5 and LASP1 in human triple-negative breast cancer cells. J. Exp. Clin. Cancer Res. 31, 58.
  • 24
    Noguchi, S., Mori, T., Otsuka, Y., Yamada, N., Yasui, Y., et al. (2012) Anti-oncogenic microRNA-203 induces senescence by targeting E2F3 protein in human melanoma cells. J. Biol. Chem. 287, 1176911777.
  • 25
    Sonkoly, E., Loven, J., Xu, N., Meisgen, F., Wei, T., et al. (2012) MicroRNA-203 functions as a tumor suppressor in basal cell carcinoma. Oncogenesis 1, e3.
  • 26
    Chen, J., Crawford, R., Chen, C., and Xiao, Y. (2013) The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. Tissue Eng. Part B Rev. 19, 516528.
  • 27
    Xu, J., Qian, J., Xie, X., Lin, L., Zou, Y., et al. (2012) High density lipoprotein protects mesenchymal stem cells from oxidative stress-induced apoptosis via activation of the PI3K/Akt pathway and suppression of reactive oxygen species. Int. J. Mol. Sci. 13, 1710417120.
  • 28
    Hou, M., Liu, J., Liu, F., Liu, K., and Yu, B. (2014) C1q tumor necrosis factor-related protein-3 protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis through the phosphoinositide 3-kinase/Akt pathway. Int. J. Mol. Med. 33, 97104.
  • 29
    Torsvik, A., and Bjerkvig, R. (2013) Mesenchymal stem cell signaling in cancer progression. Cancer Treat. Rev. 39, 180188.