• 1
    Hackett, J. A. and Surani, M. A. (2013) DNA methylation dynamics during the mammalian life cycle. Phil. Trans. R. Soc. B 368, 20110328.
  • 2
    Ziller, M. J., Gu, H., Müller, F., Donaghey, J., Tsai, L. T.-Y., et al. (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477481.
  • 3
    Lv, J., Liu, H., Su, J., Wu, X., Liu, H., et al. (2012) DiseaseMeth: a human disease methylation database. Nucleic Acids Res. 40, D1030D1035.
  • 4
    Jenuwein, T. and Allis, C. D. (2001) Translating the histone code. Science 293, 10741080.
  • 5
    Handoko, L., Xu, H., Li, G., Ngan, C. Y., Chew, E., et al. (2011) CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet. 43, 630638.
  • 6
    Majid, S., Dar, A. A., Saini, S., Yamamura, S., Hirata, H., et al. (2010) MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer 116, 56375649.
  • 7
    Lafontaine, D. L. and Tollervey, D. (1998) Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem. Sci. 23, 383388.
  • 8
    Jeon, Y. and Lee, J. T. (2011) YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146, 119133.
  • 9
    Shen, J., Wang, S., Zhang, Y.-J., Kappil, M. A., Wu, H.-C., et al. (2012) Genome-wide aberrant DNA methylation of microRNA host genes in hepatocellular carcinoma. Epigenetics 7, 12301237.
  • 10
    Suzuki, H., Maruyama, R., Yamamoto, E., and Kai, M. (2012) DNA methylation and microRNA dysregulation in cancer. Mol. Oncol. 6, 567578.
  • 11
    He, Y.-F., Li, B.-Z., Li, Z., Liu, P., Wang, Y., et al. (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 13031307.
  • 12
    Ito, S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., et al. (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 13001303.
  • 13
    Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., et al. (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315322.
  • 14
    Han, L., Su, B., Li, W.-H., and Zhao, Z. (2008) CpG island density and its correlations with genomic features in mammalian genomes. Genome Biol. 9, R79.
  • 15
    Watt, F. and Molloy, P. L. (1988) Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev. 2, 11361143.
  • 16
    Kim, J., Kollhoff, A., Bergmann, A., and Stubbs, L. (2003) Methylation-sensitive binding of transcription factor YY1 to an insulator sequence within the paternally expressed imprinted gene, Peg3. Hum. Mol. Genet. 12, 233245.
  • 17
    Belanger, A.-S., Tojcic, J., Harvey, M., and Guillemette, C. (2010) Regulation of UGT1A1 and HNF1 transcription factor gene expression by DNA methylation in colon cancer cells. BMC Mol. Biol. 11, 9.
  • 18
    Hu, S., Wan, J., Su, Y., Song, Q., Zeng, Y., et al. (2013) DNA methylation presents distinct binding sites for human transcription factors. eLife 2, e00726.
  • 19
    Buck-Koehntop, B. A. and Defossez, P.-A. (2013) On how mammalian transcription factors recognize methylated DNA. Epigenetics 8, 131137.
  • 20
    Adachi, M., Autry, A. E., Covington, H. E., and Monteggia, L. M. (2009) MeCP2-mediated transcription repression in the basolateral amygdala may underlie heightened anxiety in a mouse model of Rett syndrome. J. Neurosci. 29, 42184227.
  • 21
    Theisen, J. W. M., Gucwa, J. S., Yusufzai, T., Khuong, M. T., and Kadonaga, J. T. (2013) Biochemical analysis of histone deacetylase-independent transcriptional repression by MeCP2. J. Biol. Chem. 288, 70967104.
  • 22
    Ichimura, T., Watanabe, S., Sakamoto, Y., Aoto, T., Fujita, N., et al. (2005) Transcriptional repression and heterochromatin formation by MBD1 and MCAF/AM family proteins. J. Biol. Chem. 280, 1392813935.
  • 23
    Lyst, M. J., Nan, X., and Stancheva, I. (2006) Regulation of MBD1-mediated transcriptional repression by SUMO and PIAS proteins. EMBO J. 25, 53175328.
  • 24
    Ramírez, J., Dege, C., Kutateladze, T. G., and Hagman, J. (2012) MBD2 and multiple domains of CHD4 are required for transcriptional repression by Mi-2/NuRD complexes. Mol. Cell. Biol. 32, 50785088.
  • 25
    Reese, K. J., Lin, S., Verona, R. I., Schultz, R. M., and Bartolomei, M. S. (2007) Maintenance of paternal methylation and repression of the imprinted H19 gene requires MBD3. PLoS Genet. 3, e137.
  • 26
    Otani, J., Arita, K., Kato, T., Kinoshita, M., Kimura, H., et al. (2013) Structural basis of the versatile DNA recognition ability of the methyl CpG binding domain of methyl-CpG binding domain protein 4. J. Biol. Chem. 288, 63516362.
  • 27
    Lopez-Serra, L., Ballestar, E., Fraga, M. F., Alaminos, M., Setien, F., et al. (2006) A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer Res. 66, 83428346.
  • 28
    Amir, R. E., Van Den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., et al. (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185188.
  • 29
    Van Esch, H., Bauters, M., Ignatius, J., Jansen, M., Raynaud, M., et al. (2005) Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am. J. Hum. Genet. 77, 442453.
  • 30
    Chahrour, M., Jung, S. Y., Shaw, C., Zhou, X., Wong, S. T. C., et al. (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 12241229.
  • 31
    Huh, I., Zeng, J., Park, T., and Yi, S. (2013) DNA methylation and transcriptional noise. Epigenetics Chromatin 6, 9.
  • 32
    Jjingo, D., Conley, A. B., Soojin, V. Y., Lunyak, V. V., and Jordan, I. K. (2012) On the presence and role of human gene-body DNA methylation. Oncotarget 3, 462474.
  • 33
    Karymov, M. A., Tomschik, M., Leuba, S. H., Caiafa, P., and Zlatanova, J. (2001) DNA methylation-dependent chromatin fiber compaction in vivo and in vitro: requirement for linker histone. FASEB J. 15, 26312641.
  • 34
    Gilbert, N., Thomson, I., Boyle, S., Allan, J., Ramsahoye, B., et al. (2007) DNA methylation affects nuclear organization, histone modifications, and linker histone binding but not chromatin compaction. J. Cell Biol. 177, 401411.
  • 35
    Meissner, A., Mikkelsen, T. S., Gu, H., Wernig, M., Hanna, J., et al. (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766770.
  • 36
    Song, C.-X., Szulwach, K. E., Fu, Y., Dai, Q., Yi, C., et al. (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29, 6872.
  • 37
    Colquitt, B. M., Allen, W. E., Barnea, G., and Lomvardas, S. (2013) Alteration of genic 5-hydroxymethylcytosine patterning in olfactory neurons correlates with changes in gene expression and cell identity. Proc. Natl. Acad. Sci. USA 110, 1468214687.
  • 38
    Wu, H., D'alessio, A. C., Ito, S., Wang, Z., Cui, K., et al. (2011) Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 25, 679684.
  • 39
    Mellén, M., Ayata, P., Dewell, S., Kriaucionis, S., and Heintz, N. (2012) MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151, 14171430.
  • 40
    Pradhan, S., Bacolla, A., Wells, R. D., and Roberts, R. J. (1999) Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem. 274, 3300233010.
  • 41
    Hermann, A., Goyal, R., and Jeltsch, A. (2004) The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J. Biol. Chem. 279, 4835048359.
  • 42
    Yokochi, T. and Robertson, K. D. (2002) Preferential methylation of unmethylated DNA by mammalian de novo DNA methyltransferase Dnmt3a. J. Biol. Chem. 277, 1173511745.
  • 43
    Leonhardt, H., Page, A. W., Weier, H.-U., and Bestor, T. H. (1992) A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865873.
  • 44
    Schermelleh, L., Haemmer, A., Spada, F., Rösing, N., Meilinger, D., et al. (2007) Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res. 35, 43014312.
  • 45
    Bostick, M., Kim, J. K., Estève, P.-O., Clark, A., Pradhan, S., et al. (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 17601764.
  • 46
    Song, J., Rechkoblit, O., Bestor, T. H., and Patel, D. J. (2011) Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331, 10361040.
  • 47
    Syeda, F., Fagan, R. L., Wean, M., Avvakumov, G. V., Walker, J. R., et al. (2011) The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1. J. Biol. Chem. 286, 1534415351.
  • 48
    Berkyurek, A. C., Suetake, I., Arita, K., Takeshita, K., Nakagawa, A., et al. (2014) The DNA methyltransferase Dnmt1 directly interacts with the SET and RING finger associated (SRA) domain of the multifunctional protein Uhrf1 to facilitate accession of the catalytic center to hemi-methylated DNA. J. Biol. Chem. 289, 379386.
  • 49
    Klein, C. J., Botuyan, M.-V., Wu, Y., Ward, C. J., Nicholson, G. A., et al. (2011) Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat. Genet. 43, 595600.
  • 50
    Winkelmann, J., Lin, L., Schormair, B., Kornum, B. R., Faraco, J., et al. (2012) Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum. Mol. Genet. 21, 22052210.
  • 51
    Yuan, J., Higuchi, Y., Nagado, T., Nozuma, S., Nakamura, T., et al. (2013) Novel mutation in the replication focus targeting sequence domain of DNMT1 causes hereditary sensory and autonomic neuropathy IE. J. Peripher. Nerv. Syst. 18, 8993.
  • 52
    Li, E., Bestor, T. H., and Jaenisch, R. (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915926.
  • 53
    Kim, M., Trinh, B. N., Long, T. I., Oghamian, S., and Laird, P. W. (2004) Dnmt1 deficiency leads to enhanced microsatellite instability in mouse embryonic stem cells. Nucleic Acids Res. 32, 57425749.
  • 54
    Hutnick, L. K., Golshani, P., Namihira, M., Xue, Z., Matynia, A., et al. (2009) DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation. Hum. Mol. Genet. 18, 28752888.
  • 55
    Biniszkiewicz, D., Gribnau, J., Ramsahoye, B., Gaudet, F., Eggan, K., et al. (2002) Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol. Cell. Biol. 22, 21242135.
  • 56
    Sakai, T., Toguchida, J., Ohtani, N., Yandell, D. W., Rapaport, J. M., et al. (1991) Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am. J. Hum. Genet. 48, 880888.
  • 57
    Zeng, H., Irwin, M. L., Lu, L., Risch, H., Mayne, S., et al. (2012) Physical activity and breast cancer survival: an epigenetic link through reduced methylation of a tumor suppressor gene L3MBTL1. Breast Cancer Res. Treat. 133, 127135.
  • 58
    Zhang, C., Li, H., Wang, Y., Liu, W., Zhang, Q., et al. (2010) Epigenetic inactivation of the tumor suppressor gene RIZ1 in hepatocellular carcinoma involves both DNA methylation and histone modifications. J. Hepatol. 53, 889895.
  • 59
    Rhee, I., Jair, K.-W., Yen, R.-W. C., Lengauer, C., Herman, J. G., et al. (2000) CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404, 10031007.
  • 60
    Egger, G., Jeong, S., Escobar, S. G., Cortez, C. C., Li, T. W. H., et al. (2006) Identification of DNMT1 (DNA methyltransferase 1) hypomorphs in somatic knockouts suggests an essential role for DNMT1 in cell survival. Proc. Natl. Acad. Sci. USA 103, 1408014085.
  • 61
    Robert, M.-F., Morin, S., Beaulieu, N., Gauthier, F., Chute, I. C., et al. (2002) DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat. Genet. 33, 6165.
  • 62
    Suzuki, M., Sunaga, N., Shames, D. S., Toyooka, S., Gazdar, A. F., et al. (2004) RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells. Cancer Res. 64, 31373143.
  • 63
    Chen, T., Hevi, S., Gay, F., Tsujimoto, N., He, T., et al. (2007) Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat. Genet. 39, 391396.
  • 64
    Trowbridge, J. J., Sinha, A. U., Zhu, N., Li, M., Armstrong, S. A., et al. (2012) Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes Dev. 26, 344349.
  • 65
    Ramsahoye, B. H., Biniszkiewicz, D., Lyko, F., Clark, V., Bird, A. P., et al. (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl. Acad. Sci. USA 97, 52375242.
  • 66
    Santos, F., Hendrich, B., Reik, W., and Dean, W. (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172182.
  • 67
    Seki, Y., Yamaji, M., Yabuta, Y., Sano, M., Shigeta, M., et al. (2007) Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 134, 26272638.
  • 68
    Okano, M., Bell, D. W., Haber, D. A., and Li, E. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247257.
  • 69
    Pawlak, M. and Jaenisch, R. (2011) De novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent state. Genes Dev. 25, 10351040.
  • 70
    Kaneda, M., Okano, M., Hata, K., Sado, T., Tsujimoto, N., et al. (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429, 900903.
  • 71
    Jones, P. A. and Liang, G. (2009) Rethinking how DNA methylation patterns are maintained. Nat. Rev. Genet. 10, 805811.
  • 72
    De La Fuente, R., Baumann, C., Fan, T., Schmidtmann, A., Dobrinski, I., et al. (2006) Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells. Nat. Cell Biol. 8, 14481454.
  • 73
    Tao, Y., Xi, S., Shan, J., Maunakea, A., Che, A., et al. (2011) Lsh, chromatin remodeling family member, modulates genome-wide cytosine methylation patterns at nonrepeat sequences. Proc. Natl. Acad. Sci. USA 108, 56265631.
  • 74
    Arand, J., Spieler, D., Karius, T., Branco, M. R., Meilinger, D., et al. (2012) In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet. 8, e1002750.
  • 75
    Feng, J., Zhou, Y., Campbell, S. L., Le, T., Li, E., et al. (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 13, 423430.
  • 76
    Kim, G.-D., Ni, J., Kelesoglu, N., Roberts, R. J., and Pradhan, S. (2002) Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J. 21, 41834195.
  • 77
    Niehrs, C. and Schäfer, A. (2012) Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol. 22, 220227.
  • 78
    Zhu, J.-K. (2009) Active DNA demethylation mediated by DNA glycosylases. Annu. Rev. Genet. 43, 143.
  • 79
    Fritz, E. L. and Papavasiliou, F. N. (2010) Cytidine deaminases: AIDing DNA demethylation? Genes Dev. 24, 21072114.
  • 80
    Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., et al. (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930935.
  • 81
    Iqbal, K., Jin, S.-G., Pfeifer, G. P., and Szabó, P. E. (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl. Acad. Sci. USA 108, 36423647.
  • 82
    Hajkova, P., Erhardt, S., Lane, N., Haaf, T., El-Maarri, O., et al. (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117, 1523.
  • 83
    Popp, C., Dean, W., Feng, S., Cokus, S. J., Andrews, S., et al. (2010) Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463, 11011105.
  • 84
    Hackett, J. A., Sengupta, R., Zylicz, J. J., Murakami, K., Lee, C., et al. (2013) Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339, 448452.
  • 85
    Dawlaty, M. M., Breiling, A., Le, T., Raddatz, G., Barrasa, M. I., et al. (2013) Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev. Cell 24, 310323.
  • 86
    Guo, J., Su, Y., Zhong, C., Ming, G.-L., and Song, H. (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423434.
  • 87
    Rönn, T., Volkov, P., Davegårdh, C., Dayeh, T., Hall, E., et al. (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 9, e1003572.
  • 88
    Bedford, M. T. (2007) Arginine methylation at a glance. J. Cell Sci. 120, 42434246.
  • 89
    Pekowska, A., Benoukraf, T., Zacarias-Cabeza, J., Belhocine, M., Koch, F., et al. (2011) H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J. 30, 41984210.
  • 90
    Kim, D.-H., Tang, Z., Shimada, M., Fierz, B., Houck-Loomis, B., et al. (2013) Histone H3K27 trimethylation inhibits H3 binding and function of SET1-like H3K4 methyltransferase complexes. Mol. Cell. Biol. 33, 49364946.
  • 91
    Ezhkova, E., Lien, W.-H., Stokes, N., Pasolli, H. A., Silva, J. M., et al. (2011) EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 25, 485498.
  • 92
    Yuan, W., Xu, M., Huang, C., Liu, N., Chen, S., et al. (2011) H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem. 286, 79837989.
  • 93
    Butler, J. S. and Dent, S. Y. (2012) Chromatin ‘resetting' during transcription elongation: a central role for methylated H3K36. Nat. Struct. Mol. Biol. 19, 863864.
  • 94
    Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., et al. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129, 823837.
  • 95
    Yu, Y., Song, C., Zhang, Q., Dimaggio, P. A., Garcia, B. A., et al. (2012) Histone H3 lysine 56 methylation regulates DNA replication through its interaction with PCNA. Mol. Cell 46, 717.
  • 96
    Kooistra, S. M. and Helin, K. (2012) Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell Biol. 13, 297311.
  • 97
    Chang, B., Chen, Y., Zhao, Y., and Bruick, R. K. (2007) JMJD6 is a histone arginine demethylase. Science 318, 444447.
  • 98
    Agger, K., Cloos, P. A., Christensen, J., Pasini, D., Rose, S., et al. (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449, 731734.
  • 99
    Chan, H. M. and La Thangue, N. B. (2001) p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114, 23632373.
  • 100
    Peng, G.-H. and Chen, S. (2007) Crx activates opsin transcription by recruiting HAT-containing co-activators and promoting histone acetylation. Hum. Mol. Genet. 16, 24332452.
  • 101
    Panchenko, M. V., Zhou, M. I., and Cohen, H. T. (2004) von Hippel-Lindau partner Jade-1 is a transcriptional co-activator associated with histone acetyltransferase activity. J. Biol. Chem. 279, 5603256041.
  • 102
    Yang, X.-J. and Seto, E. (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9, 206218.
  • 103
    Hassan, A. H., Prochasson, P., Neely, K. E., Galasinski, S. C., Chandy, M., et al. (2002) Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111, 369379.
  • 104
    Wang, Z., Zang, C., Cui, K., Schones, D. E., Barski, A., et al. (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 10191031.
  • 105
    Moorman, C., Sun, L. V., Wang, J., De Wit, E., Talhout, W., et al. (2006) Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 103, 1202712032.
  • 106
    Carrozza, M. J., Li, B., Florens, L., Suganuma, T., Swanson, S. K., et al. (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581592.
  • 107
    Taylor, G. C., Eskeland, R., Hekimoglu-Balkan, B., Pradeepa, M. M., and Bickmore, W. A. (2013) H4K16 acetylation marks active genes and enhancers of embryonic stem cells, but does not alter chromatin compaction. Genome Res. 23, 20532065.
  • 108
    Jakob, B., Splinter, J., Conrad, S., Voss, K.-O., Zink, D., et al. (2011) DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res. 39, 64896499.
  • 109
    Shibata, A., Barton, O., Noon, A. T., Dahm, K., Deckbar, D., et al. (2010) Role of ATM and the damage response mediator proteins 53BP1 and MDC1 in the maintenance of G2/M checkpoint arrest. Mol. Cell. Biol. 30, 33713383.
  • 110
    Xiao, A., Li, H., Shechter, D., Ahn, S. H., Fabrizio, L. A., et al. (2008) WSTF regulates the H2A. X DNA damage response via a novel tyrosine kinase activity. Nature 457, 5762.
  • 111
    Wu, C.-Y., Kang, H.-Y., Yang, W.-L., Wu, J., Jeong, Y. S., et al. (2011) Critical role of monoubiquitination of histone H2AX protein in histone H2AX phosphorylation and DNA damage response. J. Biol. Chem. 286, 30806−30815.
  • 112
    Brown, J. a. L., Eykelenboom, J. K., and Lowndes, N. F. (2012) Co-mutation of histone H2AX S139A with Y142A rescues Y142A-induced ionising radiation sensitivity. FEBS Open Bio. 2, 313317.
  • 113
    Zheng, Y., John, S., Pesavento, J. J., Schultz-Norton, J. R., Schiltz, R. L., et al. (2010) Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II. J. Cell Biol. 189, 407415.
  • 114
    Cheung, P., Tanner, K. G., Cheung, W. L., Sassone-Corsi, P., Denu, J. M., et al. (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5, 905915.
  • 115
    Yang, W., Xia, Y., Hawke, D., Li, X., Liang, J., et al. (2012) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685696.
  • 116
    Zhu, F., Zykova, T. A., Peng, C., Zhang, J., Cho, Y.-Y., et al. (2011) Phosphorylation of H2AX at Ser139 and a new phosphorylation site Ser16 by RSK2 decreases H2AX ubiquitination and inhibits cell transformation. Cancer Res. 71, 393403.
  • 117
    Hayashi-Takanaka, Y., Yamagata, K., Nozaki, N., and Kimura, H. (2009) Visualizing histone modifications in living cells: spatiotemporal dynamics of H3 phosphorylation during interphase. J. Cell Biol. 187, 781790.
  • 118
    Loomis, R. J., Naoe, Y., Parker, J. B., Savic, V., Bozovsky, M. R., et al. (2009) Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation. Mol. Cell 33, 450461.
  • 119
    Meglicki, M., Teperek-Tkacz, M., and Borsuk, E. (2012) Appearance and heterochromatin localization of HP1α in early mouse embryos depends on cytoplasmic clock and H3S10 phosphorylation. Cell Cycle 11, 21892205.
  • 120
    Burzio, L., Riquelme, P., and Koide, S. (1979) ADP ribosylation of rat liver nucleosomal core histones. J. Biol. Chem. 254, 30293037.
  • 121
    Kleine, H. and Lüscher, B. (2009) Learning how to read ADP-ribosylation. Cell 139, 1719.
  • 122
    Fontán-Lozano, Á., Suárez-Pereira, I., Horrillo, A., Del-Pozo-Martín, Y., Hmadcha, A., et al. (2010) Histone H1 poly [ADP]-ribosylation regulates the chromatin alterations required for learning consolidation. J. Neurosci. 30, 1330513313.
  • 123
    Bao, B., Pestinger, V., Hassan, Y. I., Borgstahl, G. E., Kolar, C., et al. (2011) Holocarboxylase synthetase is a chromatin protein and interacts directly with histone H3 to mediate biotinylation of K9 and K18. J. Nutr. Biochem. 22, 470475.
  • 124
    Narang, M. A., Dumas, R., Ayer, L. M., and Gravel, R. A. (2004) Reduced histone biotinylation in multiple carboxylase deficiency patients: a nuclear role for holocarboxylase synthetase. Hum. Mol. Genet. 13, 1523.
  • 125
    Endoh, M., Endo, T. A., Endoh, T., Isono, K.-I., Sharif, J., et al. (2012) Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet. 8, e1002774.
  • 126
    Nishiyama, A., Yamaguchi, L., Sharif, J., Johmura, Y., Kawamura, T., et al. (2013) Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature 502, 249253.
  • 127
    Suganuma, T. and Workman, J. L. (2011) Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem. 80, 473499.
  • 128
    Huang, C., Xiang, Y., Wang, Y., Li, X., Xu, L., et al. (2010) Dual-specificity histone demethylase KIAA1718 (KDM7A) regulates neural differentiation through FGF4. Cell Res. 20, 154165.
  • 129
    Kassner, I., Barandun, M., Fey, M., Rosenthal, F., and Hottiger, M. O. (2013) Crosstalk between SET7/9-dependent methylation and ARTD1-mediated ADP-ribosylation of histone H1.4. Epigenetics Chromatin 6, 1.
  • 130
    Daujat, S., Zeissler, U., Waldmann, T., Happel, N., and Schneider, R. (2005) HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J. Biol. Chem. 280, 3809038095.
  • 131
    Hergeth, S. P., Dundr, M., Tropberger, P., Zee, B. M., Garcia, B. A., et al. (2011) Isoform-specific phosphorylation of human linker histone H1. 4 in mitosis by the kinase Aurora B. J. Cell Sci. 124, 16231628.
  • 132
    Darwanto, A., Curtis, M. P., Schrag, M., Kirsch, W., Liu, P., et al. (2010) A modified “cross-talk” between histone H2B Lys-120 ubiquitination and H3 Lys-79 methylation. J. Biol. Chem. 285, 2186821876.
  • 133
    Estève, P.-O., Chang, Y., Samaranayake, M., Upadhyay, A. K., Horton, J. R., et al. (2011) A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nat. Struct. Mol. Biol. 18, 4248.
  • 134
    Huang, J., Perez-Burgos, L., Placek, B. J., Sengupta, R., Richter, M., et al. (2006) Repression of p53 activity by Smyd2-mediated methylation. Nature 444, 629632.
  • 135
    Oudhoff, M. J., Freeman, S. A., Couzens, A. L., Antignano, F., Kuznetsova, E., et al. (2013) Control of the hippo pathway by Set7-dependent methylation of Yap. Dev. Cell 26, 188194.
  • 136
    Wang, D., Zhou, J., Liu, X., Lu, D., Shen, C., et al. (2013) Methylation of SUV39H1 by SET7/9 results in heterochromatin relaxation and genome instability. Proc. Natl. Acad. Sci. USA 110, 55165521.
  • 137
    Nie, L., Wu, H.-J., Hsu, J.-M., Chang, S.-S., Labaff, A. M., et al. (2012) Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. Am. J. Transl. Res. 4, 127150.
  • 138
    Schmitz, K.-M., Mayer, C., Postepska, A., and Grummt, I. (2010) Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 24, 22642269.
  • 139
    Pinter, S. F., Sadreyev, R. I., Yildirim, E., Jeon, Y., Ohsumi, T. K., et al. (2012) Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res. 22, 18641876.
  • 140
    Splinter, E., De Wit, E., Nora, E. P., Klous, P., Van De Werken, H. J., et al. (2011) The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev. 25, 13711383.
  • 141
    Chabchoub, G., Uz, E., Maalej, A., Mustafa, C. A., Rebai, A., et al. (2009) Analysis of skewed X-chromosome inactivation in females with rheumatoid arthritis and autoimmune thyroid diseases. Arthritis Res. Ther. 11, R106.
  • 142
    Castanotto, D., Lingeman, R., Riggs, A. D., and Rossi, J. J. (2009) CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proc. Natl. Acad. Sci. USA 106, 2165521659.
  • 143
    Weinmann, L., Höck, J., Ivacevic, T., Ohrt, T., Mütze, J., et al. (2009) Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell 136, 496507.
  • 144
    Nishi, K., Nishi, A., Nagasawa, T., and Ui-Tei, K. (2013) Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA 19, 1735.
  • 145
    Tang, R., Li, L., Zhu, D., Hou, D., Cao, T., et al. (2011) Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res. 22, 504515.
  • 146
    Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., et al. (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 37533756.
  • 147
    Yan, L.-X., Huang, X.-F., Shao, Q., Huang, M.-Y., Deng, L., et al. (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14, 23482360.
  • 148
    Song, R., Hennig, G. W., Wu, Q., Jose, C., Zheng, H., et al. (2011) Male germ cells express abundant endogenous siRNAs. Proc. Natl. Acad. Sci. USA 108, 1315913164.
  • 149
    Girard, A., Sachidanandam, R., Hannon, G. J., and Carmell, M. A. (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199202.
  • 150
    Reuter, M., Berninger, P., Chuma, S., Shah, H., Hosokawa, M., et al. (2011) Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480, 264267.
  • 151
    Nagano, T., Lubling, Y., Stevens, T. J., Schoenfelder, S., Yaffe, E., et al. (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 5964.
  • 152
    Fujita, N., Watanabe, S., Ichimura, T., Tsuruzoe, S., Shinkai, Y., et al. (2003) Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J. Biol. Chem. 278, 2413224138.
  • 153
    Lehnertz, B., Ueda, Y., Derijck, A. A., Braunschweig, U., Perez-Burgos, L., et al. (2003) Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 11921200.
  • 154
    Rothbart, S. B., Krajewski, K., Nady, N., Tempel, W., Xue, S., et al. (2012) Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat. Struct. Mol. Biol. 19, 11551160.
  • 155
    Ng, E. K. O., Li, R., Shin, V. Y., Siu, J. M., Ma, E. S. K., et al. (2014) MicroRNA-143 is downregulated in breast cancer and regulates DNA methyltransferases 3A in breast cancer cells. Tumor Biol. 35, 25912598.
  • 156
    Zhang, P., Huang, B., Xu, X., and Sessa, W. C. (2013) Ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG), components of the demethylation pathway, are direct targets of miRNA-29a. Biochem. Biophys. Res. Commun. 437, 368373.
  • 157
    Bolden, A., Ward, C., Siedlecki, J. A., and Weissbach, A. (1984) DNA methylation. Inhibition of de novo and maintenance methylation in vitro by RNA and synthetic polynucleotides. J. Biol. Chem. 259, 1243712443.
  • 158
    Di Ruscio, A., Ebralidze, A. K., Benoukraf, T., Amabile, G., Goff, L. A., et al. (2013) DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503, 371376.