• 1
    Verkman, A. S. and Galietta, L. J. (2009) Chloride channels as drug targets. Nat. Rev. Drug Discov. 8, 153171.
  • 2
    Caputo, A., Caci, E., Ferrera, L., Pedemonte, N., Barsanti, C., et al. (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322, 590594.
  • 3
    Schroeder, B. C., Cheng, T., Jan, Y. N., and Jan, L. Y. (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134, 10191029.
  • 4
    Yang, Y. D., Cho, H., Koo, J. Y., Tak, M. H., Cho, Y., et al. (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455, 12101215.
  • 5
    Shimizu, T., Iehara, T., Sato, K., Fujii, T., Sakai, H., et al. (2013) TMEM16F is a component of a Ca2+-activated Cl- channel but not a volume-sensitive outwardly rectifying Cl- channel. Am. J. Physiol. Cell Physiol. 304, C748C759.
  • 6
    Grubb, S., Poulsen, K. A., Juul, C. A., Kyed, T., Klausen, T. K., et al. (2013) TMEM16F (Anoctamin 6), an anion channel of delayed Ca(2+) activation. J. Gen. Physiol. 141, 585600.
  • 7
    Schreiber, R., Uliyakina, I., Kongsuphol, P., Warth, R., Mirza, M., et al. (2010) Expression and function of epithelial anoctamins. J. Biol. Chem. 285, 78387845.
  • 8
    Shimizu, T., Iehara, T., Sato, K., Fujii, T., Sakai, H., et al. (2013) TMEM16F is a component of a Ca2+-activated Cl- channel but not a volume-sensitive outwardly rectifying Cl- channel. Am. J. Physiol. Cell Physiol. 304, C748C759.
  • 9
    Edwards, J. C. and Kahl, C. R. (2010) Chloride channels of intracellular membranes, FEBS Lett. 584, 21022111.
  • 10
    Jentsch, T. J., Steinmeyer, K., and Schwarz, G. (1990) Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348, 510514.
  • 11
    Jentsch, T. J. (2008) CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit. Rev. Biochem. Mol. Biol. 43, 336.
  • 12
    Novarino, G., Weinert, S., Rickheit, G., and Jentsch, T. J. (2010) Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328, 13981401.
  • 13
    Planells-Cases, R. and Jentsch, T. J. (2009) Chloride channelopathies. Biochim. Biophys. Acta 1792, 173189.
  • 14
    Tang, C. Y. and Chen, T. Y. (2011) Physiology and pathophysiology of CLC-1: mechanisms of a chloride channel disease, myotonia. J. Biomed. Biotechnol. 2011, 685328.
  • 15
    Weinert, S., Jabs, S., Supanchart, C., Schweizer, M., Gimber, N., et al. (2010) Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl- accumulation. Science 328, 14011403.
  • 16
    Gadsby, D. C., Vergani, P., and Csanady, L. (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440, 477483.
  • 17
    Kopito, R. R. (1999) Biosynthesis and degradation of CFTR. Physiol. Rev. 79, S167S173.
  • 18
    Vasiliou, V., Vasiliou, K., and Nebert, D. W. (2009) Human ATP-binding cassette (ABC) transporter family. Hum. Genomics 3, 281290.
  • 19
    Hoffmann, E. K., Lambert, I. H., and Pedersen, S. F. (2009) Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89, 193277.
  • 20
    Stutzin, A. and Hoffmann, E. K. (2006) Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis. Acta Physiol. (Oxf) 187, 2742.
  • 21
    Nilius, B., Eggermont, J., Voets, T., Buyse, G., Manolopoulos, V., et al. (1997) Properties of volume-regulated anion channels in mammalian cells. Prog. Biophys. Mol. Biol. 68, 69119.
  • 22
    Nilius, B. and Droogmans, G. (2003) Amazing chloride channels: an overview. Acta Physiol. Scand. 177, 119147.
  • 23
    Okada, Y. (1997) Volume expansion-sensing outward-rectifier Cl- channel: fresh start to the molecular identity and volume sensor. Am. J. Physiol. 273, C755C789.
  • 24
    Eggermont, J., Trouet, D., Carton, I., and Nilius, B. (2001) Cellular function and control of volume-regulated anion channels. Cell Biochem. Biophys. 35, 263274.
  • 25
    Voets, T., Droogmans, G., Raskin, G., Eggermont, J., and Nilius, B. (1999) Reduced intracellular ionic strength as the initial trigger for activation of endothelial volume-regulated anion channels. Proc. Natl. Acad. Sci. USA 96, 52985303.
  • 26
    Nilius, B., Voets, T., Prenen, J., Barth, H., Aktories, K., et al. (1999) Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells. J. Physiol. 516 (Pt 1), 6774.
  • 27
    Pedersen, S. F., Beisner, K. H., Hougaard, C., Willumsen, B. M., Lambert, I. H., et al. (2002) Rho family GTP binding proteins are involved in the regulatory volume decrease process in NIH3T3 mouse fibroblasts. J. Physiol. 541, 779796.
  • 28
    Klausen, T. K., Hougaard, C., Hoffmann, E. K., and Pedersen, S. F. (2006) Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin. Am. J. Physiol. Cell Physiol. 291, C757C771.
  • 29
    Yamamoto, S., Ichishima, K., and Ehara, T. (2008) Regulation of volume-regulated outwardly rectifying anion channels by phosphatidylinositol 3,4,5-trisphosphate in mouse ventricular cells. Biomed. Res. 29, 307315.
  • 30
    Browe, D. M. and Baumgarten, C. M. (2004) Angiotensin II (AT1) receptors and NADPH oxidase regulate Cl- current elicited by beta1 integrin stretch in rabbit ventricular myocytes. J. Gen. Physiol. 124, 273287.
  • 31
    Shimizu, T., Numata, T., and Okada, Y. (2004) A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(-) channel. Proc. Natl. Acad. Sci. USA 101, 67706773.
  • 32
    Varela, D., Simon, F., Riveros, A., Jorgensen, F., and Stutzin, A. (2004) NAD(P)H oxidase-derived H2O2 signals chloride channel activation in cell volume regulation and cell proliferation. J. Biol. Chem. 279, 1330113304.
  • 33
    Best, L., Brown, P. D., Sener, A., and Malaisse, W. J. (2010) Electrical activity in pancreatic islet cells: the VRAC hypothesis. Islets 2, 5964.
  • 34
    Dubois, J. M. and Rouzaire-Dubois, B. (2004) The influence of cell volume changes on tumour cell proliferation. Eur. Biophys. J. 33, 227232.
  • 35
    Lang, F., Busch, G. L., Ritter, M., Volkl, H., Waldegger, S., et al. (1998) Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78, 247306.
  • 36
    Becchetti, A. (2011) Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am. J. Physiol. Cell Physiol. 301, C255C265.
  • 37
    Habela, C. W. and Sontheimer, H. (2007) Cytoplasmic volume condensation is an integral part of mitosis. Cell Cycle 6, 16131620.
  • 38
    Habela, C. W., Olsen, M. L., and Sontheimer, H. (2008) ClC3 is a critical regulator of the cell cycle in normal and malignant glial cells. J. Neurosci. 28, 92059217.
  • 39
    Habela, C. W., Ernest, N. J., Swindall, A. F., and Sontheimer, H. (2009) Chloride accumulation drives volume dynamics underlying cell proliferation and migration. J. Neurophysiol. 101, 750757.
  • 40
    Chen, L. X., Zhu, L. Y., Jacob, T. J., and Wang, L. W. (2007) Roles of volume-activated Cl- currents and regulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinoma cells. Cell Prolif. 40, 253267.
  • 41
    Jiang, B., Hattori, N., Liu, B., Nakayama, Y., Kitagawa, K., et al. (2004) Suppression of cell proliferation with induction of p21 by Cl(-) channel blockers in human leukemic cells. Eur. J. Pharmacol. 488, 2734.
  • 42
    Li, M., Wang, B., and Lin, W. (2008) Cl-channel blockers inhibit cell proliferation and arrest the cell cycle of human ovarian cancer cells. Eur. J. Gynaecol. Oncol. 29, 267271.
  • 43
    Valenzuela, S. M., Mazzanti, M., Tonini, R., Qiu, M. R., Warton, K., et al. (2000) The nuclear chloride ion channel NCC27 is involved in regulation of the cell cycle. J. Physiol. 529 Pt 3, 541552.
  • 44
    Turner, K. L. and Sontheimer, H. (2014) Cl- and K+ channels and their role in primary brain tumour biology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130095.
  • 45
    He, D., Luo, X., Wei, W., Xie, M., Wang, W., et al. (2012) DCPIB, a specific inhibitor of volume-regulated anion channels (VRACs), inhibits astrocyte proliferation and cell cycle progression via G1/S arrest. J. Mol. Neurosci. 46, 249257.
  • 46
    Klausen, T. K., Bergdahl, A., Hougaard, C., Christophersen, P., Pedersen, S. F., et al. (2007) Cell cycle-dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells. J. Cell Physiol. 210, 831842.
  • 47
    Nilius, B. (2001) Chloride channels go cell cycling. J. Physiol. 532, 581.
  • 48
    Qian, J. S., Pang, R. P., Zhu, K. S., Liu, D. Y., Li, Z. R., et al. (2009) Static pressure promotes rat aortic smooth muscle cell proliferation via upregulation of volume-regulated chloride channel. Cell Physiol. Biochem. 24, 461470.
  • 49
    Wondergem, R., Gong, W., Monen, S. H., Dooley, S. N., Gonce, J. L., et al. (2001) Blocking swelling-activated chloride current inhibits mouse liver cell proliferation. J. Physiol. 532, 661672.
  • 50
    Hoffmann, E. K. and Lambert, I. H. (2014) Ion channels and transporters in the development of drug resistance in cancer cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130109.
  • 51
    Klausen, T. K., Preisler, S., Pedersen, S. F., and Hoffmann, E. K. (2010) Monovalent ions control proliferation of Ehrlich Lettre ascites cells. Am. J. Physiol. Cell Physiol. 299, C714C725.
  • 52
    Lang, F. and Hoffmann, E. K. (2012) Role of ion transport in control of apoptotic cell death. Compr. Physiol. 2, 20372061.
  • 53
    Maeno, E., Ishizaki, Y., Kanaseki, T., Hazama, A., and Okada, Y. (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. USA 97, 94879492.
  • 54
    Poulsen, K. A., Andersen, E. C., Hansen, C. F., Klausen, T. K., Hougaard, C., et al. (2010) Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels, Am. J. Physiol. Cell Physiol. 298, C14C25.
  • 55
    Holm, J. B., Grygorczyk, R., and Lambert, I. H. (2013) Volume-sensitive release of organic osmolytes in the human lung epithelial cell line A. Am. J. Physiol. Cell Physiol. 305, C48C60.
  • 56
    Lehen'kyi, V., Shapovalov, G., Skryma, R., and Prevarskaya, N. (2011) Ion channnels and transporters in cancer. 5. Ion channels in control of cancer and cell apoptosis. Am. J. Physiol. Cell Physiol. 301, C1281C1289.
  • 57
    Lee, E. L., Shimizu, T., Ise, T., Numata, T., Kohno, K., et al. (2007) Impaired activity of volume-sensitive Cl- channel is involved in cisplatin resistance of cancer cells. J. Cell Physiol. 211, 513521.
  • 58
    Min, X. J., Li, H., Hou, S. C., He, W., Liu, J., et al. (2011) Dysfunction of volume-sensitive chloride channels contributes to cisplatin resistance in human lung adenocarcinoma cells. Exp. Biol. Med. (Maywood.) 236, 483491.
  • 59
    Hall, J. A., Kirk, J., Potts, J. R., Rae, C., and Kirk, K. (1996) Anion channel blockers inhibit swelling-activated anion, cation, and nonelectrolyte transport in HeLa cells. Am. J. Physiol. 271, C579C588.
  • 60
    Lambert, I. H. and Hansen, D. B. (2011) Regulation of taurine transport systems by protein kinase CK2 in Mammalian cells. Cell Physiol. Biochem. 28, 10991110.
  • 61
    Lambert, I. H. and Hoffmann, E. K. (1994) Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells. J. Membr. Biol. 142, 289298.
  • 62
    Shennan, D. B. and Thomson, J. (2000) Further evidence for the existence of a volume-activated taurine efflux pathway in rat mammary tissue independent from volume-sensitive Cl- channels. Acta Physiol. Scand. 168, 295299.
  • 63
    Roman, R. M., Wang, Y., and Fitz, J. G. (1996) Regulation of cell volume in a human biliary cell line: activation of K+ and Cl- currents. Am. J. Physiol. 271, G239G248.
  • 64
    Juul, C. A., Grubb, S., Poulsen, K., Kyed, T., Hashem, N., et al. (2013) Anoctamin 6 differs from VRAC and VSOAC but is involved in apoptosis and supports volume regulation in the presence of Ca2+. Pflugers Arch. DOI: 10.1007/s00424-013-1428-4.
  • 65
    Tomassen, S. F., Fekkes, D., de Jonge, H. R., and Tilly, B. C. (2004) Osmotic swelling-provoked release of organic osmolytes in human intestinal epithelial cells. Am. J. Physiol. Cell Physiol. 286, C1417C1422.
  • 66
    Pasantes-Morales, H., Quesada, O., and Moran, J. (1998) Taurine: an osmolyte in mammalian tissues. Adv. Exp. Med. Biol. 442, 209217.
  • 67
    Stutzin, A., Torres, R., Oporto, M., Pacheco, P., Eguiguren, A. L., et al. (1999) Separate taurine and chloride efflux pathways activated during regulatory volume decrease. Am. J. Physiol. 277, C392C402.
  • 68
    Lambert, I. H., Hoffmann, E. K., and Christensen, P. (1987) Role of prostaglandins and leukotrienes in volume regulation by Ehrlich ascites tumor cells. J. Membr. Biol. 98, 247256.
  • 69
    Lambert, I. H. and Hoffmann, E. K. (1993) Regulation of taurine transport in Ehrlich ascites tumor cells. J. Membr. Biol. 131, 6779.
  • 70
    Mastrocola, T., Lambert, I. H., Kramhoft, B., Rugolo, M., and Hoffmann, E. K. (1993) Volume regulation in human fibroblasts: role of Ca2+ and 5-lipoxygenase products in the activation of the Cl- efflux. J. Membr. Biol. 136, 5562.
  • 71
    Lambert, I. H. (1998) Regulation of the taurine content in Ehrlich ascites tumour cells. Adv. Exp. Med. Biol. 442, 269276.
  • 72
    Hougaard, C., Niemeyer, M. I., Hoffmann, E. K., and Sepulveda, F. V. (2000) K+ currents activated by leukotriene D4 or osmotic swelling in Ehrlich ascites tumour cells. Pflugers Arch. 440, 283294.
  • 73
    Lambert, I. H., Klausen, T. K., Bergdahl, A., Hougaard, C., and Hoffmann, E. K. (2009) Reactive oxygen species activate KCl co-transport in non-adherent Ehrlich ascites cells but K+ and Cl- channels in adherent Ehrlich Lettre and NIH3T3 cells. Am. J. Physiol. Cell Physiol. 297, C198C206.
  • 74
    Pedersen, S. F., Prenen, J., Droogmans, G., Hoffmann, E. K., and Nilius, B. (1998) Separate swelling- and Ca2+-activated anion currents in Ehrlich ascites tumor cells. J. Membr. Biol. 163, 97110.
  • 75
    Villumsen, K. R., Duelund, L., and Lambert, I. H. (2010) Acute cholesterol depletion leads to net loss of the organic osmolyte Taurine in Ehrlich Lettré tumor cells. Amino Acids 39, 15211536.
  • 76
    Lang, F., Madlung, J., Uhlemann, A. C., Risler, T., and Gulbins, E. (1998) Cellular taurine release triggered by stimulation of the Fas(CD95) receptor in Jurkat lymphocytes. Pflugers Arch. 436, 377383.
  • 77
    Moran, J., Hernandez-Pech, X., Merchant-Larios, H., and Pasantes-Morales, H. (2000) Release of taurine in apoptotic cerebellar granule neurons in culture. Pflugers Arch. 439, 271277.
  • 78
    Galietta, L. J. (2009) The TMEM16 protein family: a new class of chloride channels? Biophys. J. 97, 30473053.
  • 79
    Hahn, Y., Kim, D. S., Pastan, I. H., and Lee, B. (2009) Anoctamin and transmembrane channel-like proteins are evolutionarily related. Int. J. Mol. Med. 24, 5155.
  • 80
    Duran, C., Qu, Z., Osunkoya, A. O., Cui, Y., and Hartzell, H. C. (2012) ANOs 3–7 in the anoctamin/Tmem16 Cl- channel family are intracellular proteins. Am. J. Physiol. Cell Physiol. 302, C482C493.
  • 81
    Martins, J. R., Faria, D., Kongsuphol, P., Reisch, B., Schreiber, R., et al. (2011) Anoctamin 6 is an essential component of the outwardly rectifying chloride channel. Proc. Natl. Acad. Sci. USA 108, 1816818172.
  • 82
    Malvezzi, M., Chalat, M., Janjusevic, R., Picollo, A., Terashima, H., et al. (2013) Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nat. Commun. 4, 2367.
  • 83
    Suzuki, J., Fujii, T., Imao, T., Ishihara, K., Kuba, H., et al. (2013) Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J. Biol. Chem. 288, 1330513316.
  • 84
    Ferrera, L., Zegarra-Moran, O., and Galietta, L. J. (2011) Ca2+-activated Cl- channels. Compr. Physiol. 1, 21552174.
  • 85
    Yu, K., Duran, C., Qu, Z., Cui, Y. Y., and Hartzell, H. C. (2012) Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology. Circ. Res. 110, 990999.
  • 86
    Fallah, G., Romer, T., Detro-Dassen, S., Braam, U., Markwardt, F., et al. (2011) TMEM16A(a)/anoctamin-1 shares a homodimeric architecture with CLC chloride channels. Mol. Cell Proteomics 10, M110.
  • 87
    Das, S., Hahn, Y., Walker, D. A., Nagata, S., Willingham, M. C., et al. (2008) Topology of NGEP, a prostate-specific cell:cell junction protein widely expressed in many cancers of different grade level. Cancer Res. 68, 63066312.
  • 88
    Sheridan, J. T., Worthington, E. N., Yu, K., Gabriel, S. E., Hartzell, H. C., et al. (2011) Characterization of the oligomeric structure of the Ca(2+)-activated Cl- channel Ano1/TMEM16A. J. Biol. Chem. 286, 13811388.
  • 89
    Kuruma, A. and Hartzell, H. C. (2000) Bimodal control of a Ca(2+)-activated Cl(-) channel by different Ca(2+) signals. J. Gen. Physiol. 115, 5980.
  • 90
    Tian, Y., Kongsuphol, P., Hug, M., Ousingsawat, J., Witzgall, R., et al. (2011) Calmodulin-dependent activation of the epithelial calcium-dependent chloride channel TMEM16A. FASEB J. 25, 10581068.
  • 91
    Vocke, K., Dauner, K., Hahn, A., Ulbrich, A., Broecker, J., et al. (2013) Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels. J. Gen. Physiol. 142, 381404.
  • 92
    Jung, J., Nam, J. H., Park, H. W., Oh, U., Yoon, J. H., et al. (2013) Dynamic modulation of ANO1/TMEM16A HCO3(-) permeability by Ca2+/calmodulin. Proc. Natl. Acad. Sci. USA 110, 360365.
  • 93
    Yu, K., Zhu, J., Qu, Z., Cui, Y. Y., and Hartzell, H. C. (2014) Activation of the Ano1 (TMEM16A) chloride channel by calcium is not mediated by calmodulin. J. Gen. Physiol. 143, 253267.
  • 94
    Terashima, H., Picollo, A., and Accardi, A. (2013) Purified TMEM16A is sufficient to form Ca2+-activated Cl- channels. Proc. Natl. Acad. Sci. USA 110, 1935419359.
  • 95
    Ferrera, L., Caputo, A., Ubby, I., Bussani, E., Zegarra-Moran, O., et al. (2009) Regulation of TMEM16A chloride channel properties by alternative splicing. J. Biol. Chem. 284, 3336033368.
  • 96
    Kunzelmann, K., Tian, Y., Martins, J. R., Faria, D., Kongsuphol, P., et al. (2011) Anoctamins. Pflugers Arch. 462, 195208.
  • 97
    Perez-Cornejo, P., Gokhale, A., Duran, C., Cui, Y., Xiao, Q., et al. (2012) Anoctamin 1 (Tmem16A) Ca2+-activated chloride channel stoichiometrically interacts with an ezrin-radixin-moesin network. Proc. Natl. Acad. Sci. USA 109, 1037610381.
  • 98
    Rock, J. R., Futtner, C. R., and Harfe, B. D. (2008) The transmembrane protein TMEM16A is required for normal development of the murine trachea. Dev. Biol. 321, 141149.
  • 99
    Rock, J. R., O'Neal, W. K., Gabriel, S. E., Randell, S. H., Harfe, B. D., et al. (2009) Transmembrane protein 16A (TMEM16A) is a Ca2+-regulated Cl- secretory channel in mouse airways. J. Biol. Chem. 284, 1487514880.
  • 100
    Boese, S. H., Gray, M. A., and Simmons, N. L. (2004) Volume-dependent and -independent activated anion conductances and their interaction in the renal inner medullary collecting duct (IMCD). Adv. Exp. Med. Biol. 559, 109118.
  • 101
    Ousingsawat, J., Martins, J. R., Schreiber, R., Rock, J. R., Harfe, B. D., et al. (2009) Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport. J. Biol. Chem. 284, 2869828703.
  • 102
    Buchholz, B., Faria, D., Schley, G., Schreiber, R., Eckardt, K. U., et al. (2013) Anoctamin 1 induces calcium-activated chloride secretion and proliferation of renal cyst-forming epithelial cells. Kidney Int. DOI: 10.1038/ki.2013.418.
  • 103
    Manoury, B., Tamuleviciute, A., and Tammaro, P. (2010) TMEM16A/anoctamin 1 protein mediates calcium-activated chloride currents in pulmonary arterial smooth muscle cells. J. Physiol. 588, 23052314.
  • 104
    Thomas-Gatewood, C., Neeb, Z. P., Bulley, S., Adebiyi, A., Bannister, J. P., et al. (2011) TMEM16A channels generate Ca(2)(+)-activated Cl(-) currents in cerebral artery smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 301, H1819H1827.
  • 105
    Hartzell, C., Putzier, I., and Arreola, J. (2005) Calcium-activated chloride channels. Annu. Rev. Physiol. 67, 719758.
  • 106
    Bulley, S., Neeb, Z. P., Burris, S. K., Bannister, J. P., Thomas-Gatewood, C. M., et al. (2012) TMEM16A/ANO1 channels contribute to the myogenic response in cerebral arteries. Circ. Res. 111, 10271036.
  • 107
    Hwang, S. J., Blair, P. J., Britton, F. C., O'Driscoll, K. E., Hennig, G., et al. (2009) Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J. Physiol. 587, 48874904.
  • 108
    Dixon, R. E., Hennig, G. W., Baker, S. A., Britton, F. C., Harfe, B. D., et al. (2012) Electrical slow waves in the mouse oviduct are dependent upon a calcium activated chloride conductance encoded by Tmem16a. Biol. Reprod. 86, 17.
  • 109
    Cho, H., Yang, Y. D., Lee, J., Lee, B., Kim, T., et al. (2012) The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat. Neurosci. 15, 10151021.
  • 110
    Maurya, D. K. and Menini, A. (2013) Developmental expression of the calcium-activated chloride channels TMEM16A and TMEM16B in the mouse olfactory epithelium. Dev. Neurobiol. DOI: 10.1002/dneu.22159.
  • 111
    Yao, Z., Namkung, W., Ko, E. A., Park, J., Tradtrantip, L., et al. (2012) Fractionation of a herbal antidiarrheal medicine reveals eugenol as an inhibitor of Ca2+-activated Cl- channel TMEM16A. PLoS One 7, e38030.
  • 112
    Namkung, W., Thiagarajah, J. R., Phuan, P. W., and Verkman, A. S. (2010) Inhibition of Ca2+-activated Cl- channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J. 24, 41784186.
  • 113
    Namkung, W., Phuan, P. W., and Verkman, A. S. (2011) TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J. Biol. Chem. 286, 23652374.
  • 114
    Kunzelmann, K., Schreiber, R., Kmit, A., Jantarajit, W., Martins, J. R., et al. (2012) Expression and function of epithelial anoctamins. Exp. Physiol. 97, 184192.
  • 115
    Mizuta, K., Tsutsumi, S., Inoue, H., Sakamoto, Y., Miyatake, K., et al. (2007) Molecular characterization of GDD1/TMEM16E, the gene product responsible for autosomal dominant gnathodiaphyseal dysplasia, Biochem. Biophys. Res. Commun. 357, 126132.
  • 116
    Tsutsumi, S., Inoue, H., Sakamoto, Y., Mizuta, K., Kamata, N., et al. (2005) Molecular cloning and characterization of the murine gnathodiaphyseal dysplasia gene GDD1. Biochem. Biophys. Res. Commun. 331, 10991106.
  • 117
    Tsutsumi, S., Kamata, N., Vokes, T. J., Maruoka, Y., Nakakuki, K., et al. (2004) The novel gene encoding a putative transmembrane protein is mutated in gnathodiaphyseal dysplasia (GDD). Am. J. Hum. Genet. 74, 12551261.
  • 118
    Bolduc, V., Marlow, G., Boycott, K. M., Saleki, K., Inoue, H., et al. (2010) Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am. J. Hum. Genet. 86, 213221.
  • 119
    Deschauer, M., Joshi, P. R., Glaser, D., Hanisch, F., Stoltenburg, G., et al. (2011) [Muscular dystrophy due to mutations in anoctamin 5: clinical and molecular genetic findings]. Nervenarzt 82, 15961603.
  • 120
    Hicks, D., Sarkozy, A., Muelas, N., Koehler, K., Huebner, A., et al. (2011) A founder mutation in Anoctamin 5 is a major cause of limb-girdle muscular dystrophy. Brain 134, 171182.
  • 121
    Penttila, S., Palmio, J., Suominen, T., Raheem, O., Evila, A., et al. (2012) Eight new mutations and the expanding phenotype variability in muscular dystrophy caused by ANO5. Neurology 78, 897903.
  • 122
    Suzuki, J., Umeda, M., Sims, P. J., and Nagata, S. (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468, 834838.
  • 123
    Almaca, J., Tian, Y., Aldehni, F., Ousingsawat, J., Kongsuphol, P., et al. (2009) TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A. J. Biol. Chem. 284, 2857128578.
  • 124
    Kunzelmann, K., Nilius, B., Owsianik, G., Schreiber, R., Ousingsawat, J., et al. (2014) Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase? Pflug. Arch. Eur. J. Phy. 466, 407414.
  • 125
    Bevers, E. M. and Williamson, P. L. (2010) Phospholipid scramblase: an update. FEBS Lett. 584, 27242730.
  • 126
    Ehlen, H. W., Chinenkova, M., Moser, M., Munter, H. M., Krause, Y., et al. (2013) Inactivation of anoctamin-6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues. J. Bone Miner. Res. 28, 246259.
  • 127
    Ubby, I., Bussani, E., Colonna, A., Stacul, G., Locatelli, M., et al. (2013) TMEM16A alternative splicing coordination in breast cancer. Mol. Cancer 12, 75.
  • 128
    Lambert, I. H. (2004) Regulation of the cellular content of the organic osmolyte taurine in mammalian cells. Neurochem. Res. 29, 2763.
  • 129
    Jacobsen, K. S., Zeeberg, K., Sauter, D. R., Poulsen, K. A., Hoffmann, E. K., et al. (2013) The role of TMEM16A (ANO1) and TMEM16F (ANO6) in cell migration. Pflugers Arch. 465, 17531762.
  • 130
    Liu, W., Lu, M., Liu, B., Huang, Y., and Wang, K. (2012) Inhibition of Ca(2+)-activated Cl(-) channel ANO1/TMEM16A expression suppresses tumor growth and invasiveness in human prostate carcinoma. Cancer Lett. 326, 4151.
  • 131
    Mazzone, A., Eisenman, S. T., Strege, P. R., Yao, Z., Ordog, T., et al. (2012) Inhibition of cell proliferation by a selective inhibitor of the Ca(2+)-activated Cl(-) channel, Ano1. Biochem. Biophys. Res. Commun. 427, 248253.
  • 132
    Stanich, J. E., Gibbons, S. J., Eisenman, S. T., Bardsley, M. R., Rock, J. R., et al. (2011) Ano1 as a regulator of proliferation. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G1044G1051.
  • 133
    Britschgi, A., Bill, A., Brinkhaus, H., Rothwell, C., Clay, I., et al. (2013) Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc. Natl. Acad. Sci. USA 110, E1026E1034.
  • 134
    Ruiz, C., Martins, J. R., Rudin, F., Schneider, S., Dietsche, T., et al. (2012) Enhanced expression of ANO1 in head and neck squamous cell carcinoma causes cell migration and correlates with poor prognosis. PLoS. One 7, e43265.
  • 135
    Kmit, A., van, K. R., Ousingsawat, J., Mattheij, N. J., Senden-Gijsbers, B., et al. (2013) Calcium-activated and apoptotic phospholipid scrambling induced by Ano6 can occur independently of Ano6 ion currents. Cell Death Dis. 4, e611.
  • 136
    Carles, A., Millon, R., Cromer, A., Ganguli, G., Lemaire, F., et al. (2006) Head and neck squamous cell carcinoma transcriptome analysis by comprehensive validated differential display. Oncogene 25, 18211831.
  • 137
    Espinosa, I., Lee, C. H., Kim, M. K., Rouse, B. T., Subramanian, S., et al. (2008) A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am. J. Surg. Pathol. 32, 210218.
  • 138
    West, R. B., Corless, C. L., Chen, X., Rubin, B. P., Subramanian, S., et al. (2004) The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am. J. Pathol. 165, 107113.
  • 139
    Ayoub, C., Wasylyk, C., Li, Y., Thomas, E., Marisa, L., et al. (2010) ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines. Br. J. Cancer 103, 715726.
  • 140
    Schwab, A., Fabian, A., Hanley, P. J., and Stock, C. (2012) Role of ion channels and transporters in cell migration. Physiol. Rev. 92, 18651913.
  • 141
    Espinosa-Tanguma, R., O'Neil, C., Chrones, T., Pickering, J. G., and Sims, S. M. (2011) Essential role for calcium waves in migration of human vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 301, H315H323.
  • 142
    Kato, U., Inadome, H., Yamamoto, M., Emoto, K., Kobayashi, T., et al. (2013) Role for phospholipid flippase complex of ATP8A1 and CDC50A proteins in cell migration. J. Biol. Chem. 288, 49224934.