• 1
    Jevons, M. P. (1961) Celbenin resistant staphylococci. BMJ 1, 124125.
  • 2
    Walsh, C. (1999) Deconstructing vancomycin. Science 284, 442443.
  • 3
    French, G. L. (2006) Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin. J. Antimicrob. Chemother. 58, 11071117.
  • 4
    Hernandez, P. O., Lema, S., Tyring, S. K., and Mendoza, N. (2012) Ceftaroline in complicated skin and skin-structure infections. Infect. Drug Resist. 5, 2335.
  • 5
    Wilcox, M. H. (2005) Update on linezolid: the first oxazolidinone antibiotic. Expert Opin. Pharmacother. 6, 23152326.
  • 6
    Hiramatsu, K., Hanaki, H., Ino, T., Yabuta, K., Oguri, T., et al. (1997) Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 40, 135136.
  • 7
    Appelbaum, P. C. (2006) The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 12 (Suppl 1), 1623.
  • 8
    Chang, S., Sievert, D. M., Hageman, J. C., Boulton, M. L., Tenover, F. C., et al. (2003) Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med. 348, 13421347.
  • 9
    Stryjewski, M. E., and Corey, G. R. (2014) Methicillin-resistant Staphylococcus aureus: an evolving pathogen. Clin. Infect. Dis. 58, S10S19.
  • 10
    Meroueh, S. O., Bencze, K. Z., Hesek, D., Lee, M., Fisher, J. F. et al. (2006) Three-dimensional structure of the bacterial cell wall peptidoglycan. Proc. Natl. Acad. Sci. USA 103, 44044409.
  • 11
    Bugg, T. D., and Walsh, C. T. (1992) Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat. Prod. Rep. 9, 199215.
  • 12
    Scheffers, D. J., and Pinho, M. G. (2005) Bacterial cell wall synthesis: new insights from localization studies. Microbiol. Mol. Biol. Rev. 69, 585607.
  • 13
    Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A., and Charlier, P. (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32, 234258.
  • 14
    Tipper, D. J., and Strominger, J. L. (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-d-alanyl-d-alanine. Proc. Natl. Acad. Sci. USA 54, 11331141.
  • 15
    Cox, G., and Wright, G. D. (2013) Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int. J. Med. Microbiol. 303, 287292.
  • 16
    Hawkey, P. M. (1998) The origins and molecular basis of antibiotic resistance. BMJ 317, 657660.
  • 17
    Fisher, J. F., and Mobashery, S. (2010) Enzymology of bacterial resistance. In Comprehensive Natural Products II (Liu, H. W., and Mander, L., eds.), pp. 443487, Elsevier, Oxford.
  • 18
    Lowy, F. D. (2003) Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest. 111, 12651273.
  • 19
    Blazquez, B., Llarrull, L. I., Luque-Ortega, J. R., Alfonso, C., Boggess, B., et al. (2014) Regulation of the expression of the β-lactam antibiotic-resistance determinants in methicillin-resistant Staphylococcus aureus (MRSA). Biochemistry 53, 15481550.
  • 20
    Cha, J., Vakulenko, S. B., and Mobashery, S. (2007) Characterization of the β-lactam antibiotic sensor domain of the MecR1 signal sensor/transducer protein from methicillin-resistant Staphylococcus aureus. Biochemistry 46, 78227831.
  • 21
    McKinney, T. K., Sharma, V. K., Craig, W. A., and Archer, G. L. (2001) Transcription of the gene mediating methicillin resistance in Staphylococcus aureus (mecA) is corepressed but not coinduced by cognate mecA and β-lactamase regulators. J. Bacteriol. 183, 68626868.
  • 22
    Rosato, A. E., Kreiswirth, B. N., Craig, W. A., Eisner, W., Climo, M. W., et al. (2003) mecA-blaZ corepressors in clinical Staphylococcus aureus isolates. Antimicrob. Agents Chemother. 47, 14601463.
  • 23
    Ryffel, C., Kayser, F. H., and Berger-Bachi, B. (1992) Correlation between regulation of mecA transcription and expression of methicillin resistance in staphylococci. Antimicrob. Agents Chemother. 36, 2531.
  • 24
    Berger-Bachi, B., Barberis-Maino, L., Strassle, A., and Kayser, F. H. (1989) femA, a host-mediated factor essential for methicillin resistance in Staphylococcus aureus: molecular cloning and characterization. Mol. Gen. Genet. 219, 263269.
  • 25
    de Lencastre, H., and Tomasz, A. (1994) Reassessment of the number of auxiliary genes essential for expression of high-level methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 38, 25902598.
  • 26
    Fuda, C., Suvorov, M., Shi, Q., Hesek, D., Lee, M., et al. (2007) Shared functional attributes between the mecA gene product of Staphylococcus sciuri and penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. Biochemistry 46, 80508057.
  • 27
    Tsubakishita, S., Kuwahara-Arai, K., Sasaki, T., and Hiramatsu, K. (2010) Origin and molecular evolution of the determinant of methicillin resistance in staphylococci. Antimicrob. Agents Chemother. 54, 43524359.
  • 28
    Wu, S. W., de Lencastre, H., and Tomasz, A. (2005) Expression of high-level methicillin resistance in Staphylococcus aureus from the Staphylococcus sciuri mecA homologue: role of mutation(s) in the genetic background and in the coding region of mecA. Microbial. Drug Resist. 11, 215224.
  • 29
    Finan, J. E., Rosato, A. E., Dickinson, T. M., Ko, D., and Archer, G. L. (2002) Conversion of oxacillin-resistant staphylococci from heterotypic to homotypic resistance expression. Antimicrob. Agents Chemother. 46, 2430.
  • 30
    Niemeyer, D. M., Pucci, M. J., Thanassi, J. A., Sharma, V. K., and Archer, G. L. (1996) Role of mecA transcriptional regulation in the phenotypic expression of methicillin resistance in Staphylococcus aureus. J. Bacteriol. 178, 54645471.
  • 31
    Fuda, C., Suvorov, M., Vakulenko, S. B., and Mobashery, S. (2004) The basis for resistance to β-lactam antibiotics by penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. J. Biol. Chem. 279, 4080240806.
  • 32
    Lim, D., and Strynadka, N. C. (2002) Structural basis for the β-lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat. Struct. Biol. 9, 870876.
  • 33
    Otero, L. H., Rojas-Altuve, A., Llarrull, L. I., Carrasco-Lopez, C., Kumarasiri, M., et al. (2013) How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc. Natl. Acad. Sci. USA 110, 1680816813.
  • 34
    Lovering, A. L., Gretes, M. C., Safadi, S. S., Danel, F., de Castro, L., et al. (2012) Structural insights into the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of ceftobiprole. J. Biol. Chem. 287, 3209632102.
  • 35
    Lu, W. P., Sun, Y., Bauer, M. D., Paule, S., Koenigs, P. M., et al. (1999) Penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus: kinetic characterization of its interactions with β-lactams using electrospray mass spectrometry. Biochemistry 38, 65376546.
  • 36
    Wu, C. Y., Hoskins, J., Blaszczak, L. C., Preston, D. A., and Skatrud, P. L. (1992) Construction of a water-soluble form of penicillin-binding protein 2a from a methicillin-resistant Staphylococcus aureus isolate. Antimicrob. Agents Chemother. 36, 533539.
  • 37
    Kosowska-Shick, K., McGhee, P. L., and Appelbaum, P. C. (2010) Affinity of ceftaroline and other β-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob. Agents Chemother. 54, 16701677.
  • 38
    Villegas-Estrada, A., Lee, M., Hesek, D., Vakulenko, S. B., and Mobashery, S. (2008) Co-opting the cell wall in fighting methicillin-resistant Staphylococcus aureus: potent inhibition of PBP 2a by two anti-MRSA β-lactam antibiotics. J. Am. Chem. Soc. 130, 92129213.
  • 39
    Saravolatz, L. D., Stein, G. E., and Johnson, L. B. (2011) Ceftaroline: a novel cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 52, 11561163.
  • 40
    Jones, R. N., Mendes, R. E., and Sader, H. S. (2010) Ceftaroline activity against pathogens associated with complicated skin and skin structure infections: results from an international surveillance study. J. Antimicrob. Chemother. 65 (Suppl 4), iv17iv31.
  • 41
    Hebeisen, P., Heinze-Krauss, I., Angehrn, P., Hohl, P., Page, M. G., et al. (2001) In vitro and in vivo properties of Ro 63–9141, a novel broad-spectrum cephalosporin with activity against methicillin-resistant staphylococci. Antimicrob. Agents Chemother. 45, 825836.
  • 42
    Davies, T. A., Page, M. G., Shang, W., Andrew, T., Kania, M., et al. (2007) Binding of ceftobiprole and comparators to the penicillin-binding proteins of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. Antimicrob. Agents Chemother. 51, 26212624.
  • 43
    Farrell, D. J., Flamm, R. K., Sader, H. S., and Jones, R. N. (2014) Activity of ceftobiprole against methicillin-resistant Staphylococcus aureus strains with reduced susceptibility to daptomycin, linezolid or vancomycin, and strains with defined SCCmec types. Int. J. Antimicrob. Agents 43, 323327.
  • 44
    Lee, W., McDonough, M. A., Kotra, L., Li, Z. H., Silvaggi, N. R., et al. (2001) A 1.2-Å snapshot of the final step of bacterial cell wall biosynthesis. Proc. Natl. Acad. Sci. USA 98, 14271431.
  • 45
    Shi, Q., Meroueh, S. O., Fisher, J. F., and Mobashery, S. (2011) A computational evaluation of the mechanism of penicillin-binding protein-catalyzed cross-linking of the bacterial cell wall. J. Am. Chem. Soc. 133, 52745283.
  • 46
    Ansari, A., Berendzen, J., Bowne, S. F., Frauenfelder, H., Iben, I. E., et al. (1985) Protein states and proteinquakes. Proc. Natl. Acad. Sci. USA 82, 50005004.
  • 47
    Goodey, N. M., and Benkovic, S. J. (2008) Allosteric regulation and catalysis emerge via a common route. Nat. Chem. Biol. 4, 474482.
  • 48
    Changeux, J.-P. (2012) Allostery and the Monod-Wyman-Changeux model after 50 years. Annu. Rev. Biophys. 41, 103133.
  • 49
    Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., et al. (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34, W116W118.
  • 50
    Fuda, C., Hesek, D., Lee, M., Morio, K.-I., Nowak, T., et al. (2005) Activation for catalysis of penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus by bacterial cell wall. J. Am. Chem. Soc. 127, 20562057.
  • 51
    Chambers, H. F. (1995) In vitro and in vivo antistaphylococcal activities of L-695,256, a carbapenem with high affinity for the penicillin-binding protein PBP 2a. Antimicrob. Agents Chemother. 39, 462466.
  • 52
    Mendes, R. E., Tsakris, A., Sader, H. S., Jones, R. N., Biek, D., et al. (2012) Characterization of methicillin-resistant Staphylococcus aureus displaying increased MICs of ceftaroline. J. Antimicrob. Chemother. 67, 13211324.
  • 53
    Banerjee, R., Gretes, M., Basuino, L., Strynadka, N., and Chambers, H. F. (2008) In vitro selection and characterization of ceftobiprole-resistant methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 52, 20892096.
  • 54
    Katayama, Y., Zhang, H.-Z., and Chambers, H. F. (2004) PBP 2a mutations producing very-high-level resistance to β-lactams. Antimicrob. Agents Chemother. 48, 453459.
  • 55
    O'Daniel, P. I., Peng, Z., Pi, H., Testero, S. A., Ding, D., et al. (2014) Discovery of a new class of non-β-lactam inhibitors of penicillin-binding proteins with Gram-positive antibacterial activity. J. Am. Chem. Soc. 136, 36643672.
  • 56
    Walsh, C. T., and Wencewicz, T. A. (2014) Prospects for new antibiotics: a molecule-centered perspective. J. Antibiot. 67, 722.
  • 57
    Zhu, W., Zhang, Y., Sinko, W., Hensler, M. E., Olson, J., et al. (2013) Antibacterial drug leads targeting isoprenoid biosynthesis. Proc. Natl. Acad. Sci. USA 110, 123128.
  • 58
    Tan, C. M., Therien, A. G., Lu, J., Lee, S. H., Caron, A., et al. (2012) Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics. Sci. Transl. Med. 4, 126ra135.
  • 59
    Wang, H., Gill, C. J., Lee, S. H., Mann, P., Zuck, P., et al. (2013) Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents. Chem. Biol. 20, 272284.
  • 60
    Lee, S. H., Jarantow, L. W., Wang, H., Sillaots, S., Cheng, H., et al. (2011) Antagonism of chemical genetic interaction networks resensitize MRSA to β-lactam antibiotics. Chem. Biol. 18, 13791389.
  • 61
    Guignard, B., Vouillamoz, J., Giddey, M., and Moreillon, P. (2013) A positive interaction between inhibitors of protein synthesis and cefepime in the fight against methicillin-resistant Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 32, 899907.