SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Weissman, I. L. ( 2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157168.
  • 2
    Orkin, S. H. and Zon, L. I. ( 2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631464.
  • 3
    Palis, J. ( 2008) Ontogeny of erythropoiesis. Curr. Opin. Hematol. 15, 155161.
  • 4
    Adams, G. B. and Scadden, D. T. ( 2006) The hematopoietic stem cell in its place. Nat. Immunol. 7, 333337.
  • 5
    Metcalf, D. ( 2008) Hematopoietic cytokines. Blood 111, 485491.
  • 6
    Koury, M. J.,Sawyer, S. T., and Brandt, S. J. ( 2002) New insights into erythropoiesis. Curr. Opin. Hematol. 9, 93100.
  • 7
    Ingley, E.,Tilbrook, P. A., and Klinken, S. P. ( 2004) New insights into the regulation of erythroid cells. IUBMB Life 56, 177184.
  • 8
    Stamatoyannopoulos, G. ( 2005) Control of globin gene expression during development and erythroid differentiation. Exp. Hematol. 33, 259271.
  • 9
    Bank, A. ( 2006) Regulation of human fetal hemoglobin: new players, new complexities. Blood 107, 435443.
  • 10
    McGrath, K. E.,Kingsley, P. D.,Koniski, A. D.,Porter, R. L.,Bushnell, T. P., and Palis, J. ( 2008) Enucleation of primitive erythroid cells generates a transient population of “pyrenocytes” in the mammalian fetus. Blood 111, 24092417.
  • 11
    Dzierzak, E. and Speck, N. A. ( 2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat. Immunol. 9, 129136.
  • 12
    Bessis, M. ( 1958) L'ilot eryhtroblastique: Unite functionelle de la moelle osseuse. [Erythroblastic island, functional unity of bone marrow]. Rev. Hematol. 13, 811.
  • 13
    Allen, T. D. and Dexter, T. M. ( 1982) Ultrastructural aspects of erythropoietic differentiation in long-term bone marrow culture. Differentiation 21, 8694.
  • 14
    Chasis, J. A. and Mohandas, N. ( 2008) Erythroblastic islands: niches for erythropoiesis. Blood 112, 470478.
  • 15
    Eshghi, S.,Vogelezang, M. G.,Hynes, R. O.,Griffith, L. G., and Lodish, H. F. ( 2007) Alpha4beta1 integrin and erythropoietin mediate temporally distinct steps in erythropoiesis: integrins in red cell development. J. Cell Biol. 177, 871880.[Erratum in: J. Cell Biol. ( 2008) 181, 395].
  • 16
    Friend, C.,Scher, W.,Holland, J. G., and Sato, T. ( 1971) Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc. Natl. Acad. Sci. USA 68, 378382.
  • 17
    Marks, P. A. and Rifkind, R. A. ( 1978) Erythroleukemic differentiation. Annu. Rev. Biochem. 47, 419448.
  • 18
    Tsiftsoglou, A. S.,Pappas, I. S., and Vizirianakis, I. S. ( 2003) Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol. Ther. 100, 257290.
  • 19
    Tsiftsoglou, A. S.,Barrnett, R. J., and Sartorelli, A. C. ( 1979) Enucleation of differentiated murine erythroleukemia cells in culture. Proc. Natl. Acad. Sci. USA 76, 63816385.
  • 20
    Tsiftsoglou, A. S.,Tsamadou, A. I., and Papadopoulou, L. C. ( 2006) Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects. Pharmacol. Ther. 111, 327345.
  • 21
    Weiss, M. J.,Yu, C., and Orkin, S. H. ( 1997) Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene targeted cell line. Mol. Cell. Biol. 17, 16421651.
  • 22
    Gregory, T.,Yu, C.,Ma, A.,Orkin, S. H.,Blobel, G. A., and Weiss, M. J. ( 1999) GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood 94, 8796.
  • 23
    Kapur, R. and Zhang, L. ( 2001) A novel mechanism of cooperation between c-Kit and erythropoietin receptor: stem cell factor induces the expression of Stat5 and erythropoietin receptor, resulting in efficient proliferation and survival by erythropoietin. J. Biol. Chem. 276, 10991106.
  • 24
    Rylski, M.,Welch, J. J.,Chen, Y. Y.,Letting, D. L.,Diehl, J. A.,Chodosh, L. A.,Blobel, G. A., and Weiss, M. J. ( 2003) GATA-1-mediated proliferation arrest during erythroid maturation. Mol. Cell. Biol. 23, 50315042.
  • 25
    Manugalavadla, V. and Kapur, R. ( 2005) Role of c-Kit and erythropoietin receptor in erythropoiesis. Crit. Rev. Oncol. Hematol. 54, 6375.
  • 26
    Welch, J. J.,Watts, J. A.,Vakoc, C. R.,Yao, Y.,Wang, H.,Hardison, R. C.,Blobel, G. A.,Chodosh, L. A., and Weiss, M. J. ( 2004) Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 104, 31363147.
  • 27
    Olsen, A. L.,Stachura, D. L., and Weiss, M. J. ( 2006) Designer blood: creating hematopoietic lineages from embryonic stem cells. Blood 107, 12651275.
  • 28
    Wiles, M. V. and Keller, G. ( 1991) Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111, 259267.
  • 29
    Keller, G.,Kennedy, M.,Papayannopoulou, T., and Wiles, M. V. ( 1993) Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell. Biol. 13, 473486.
  • 30
    Carotta, S.,Pilat, S.,Mairhofer, A.,Schmidt, U.,Dolznig, H.,Steinlein, P., and Beug, H. ( 2004) Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells. Blood 104, 18731880.
  • 31
    Nakano, T. ( 1996) In vitro development of hematopoietic system from mouse embryonic stem cells: a new approach for embryonic hematopoiesis. Int. J. Hematol. 65, 18.
  • 32
    Kitajima, K.,Tanaka, M.,Zheng, J.,Sakai-Ogawa, E., and Nakano, T. ( 2003) In vitro differentiation of mouse embryonic stem cells to hematopoietic cells on an OP9 stromal cell monolayer. Methods. Enzymol. 365, 7283.
  • 33
    Weiss, M. J.,Keller, G., and Orkin, S. H. ( 1994) Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev. 8, 11841197.
  • 34
    Kennedy, M.,Firpo, M.,Choi, K.,Wall, C.,Robertson, S.,Kabrun, N., and Keller, G. ( 1997) A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 386, 488493.
  • 35
    Choi, K.,Kennedy, M.,Kazarov, A.,Papadimitriou, J. C., and Keller, G. ( 1998) A common precursor for hematopoietic and endothelial cells. Development 125, 725732.
  • 36
    Thompson, M. A.,Ransom, D. G.,Pratt, S. J.,MacLennan, H.,Kieran, M. W.,Detrich, H. W. III.,Vail, B.,Huber, T. L.,Paw, B.,Brownlie, A. J.,Oates, A. C.,Fritz, A.,Gates, M. A.,Amores, A.,Bahary, N.,Talbot, W. S.,Her, H.,Beier, D. R.,Postlethwait, J. H., and Zon, L. I. ( 1998) The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev. Biol. 197, 248269.
  • 37
    Yu, J. and Thomson, J. A. ( 2008) Pluripotent stem cell lines. Genes Dev. 22, 19871997.
  • 38
    Wang, L.,Menendez, P.,Cerdan, C., and Bhatia, M. ( 2005) Hematopoietic development from human embryonic stem cell lines. Exp. Hematol. 33, 987996.
  • 39
    Chang, K. H.,Nelson, A. M.,Cao, H.,Wang, L.,Nakamoto, B.,Ware, C. B., and Papayannopoulou, T. ( 2006) Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. Blood 108, 15151523.
  • 40
    Ma, F.,Ebihara, Y.,Umeda, K.,Sakai, H.,Hanada, S.,Zhang, H.,Zaike, Y.,Tsuchida, E.,Nakahata, T.,Nakauchi, H., and Tsuji, K. ( 2008) Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc. Natl. Acad. Sci. USA 105, 1308713092.
  • 41
    Chang, K. H.,Nelson, A. M.,Fields, P. A.,Hesson, J. L.,Ulyanova, T.,Cao, H.,Nakamoto, B.,Ware, C. B., and Papayannopoulou, T. ( 2008) Diverse hematopoietic potentials of five human embryonic stem cell lines. Exp. Cell Res. 314, 29302940.
  • 42
    Zambidis, E. T.,Peault, B.,Park, T. S.,Bunz, F., and Civin, C. I. ( 2005) Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood 106, 860870.
  • 43
    Olivier, E. N.,Qiu, C.,Velho, M.,Hirsch, R. E., and Bouhassira, E. E. ( 2006) Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp. Hematol. 34, 16351642.
  • 44
    Lu, J.,Guo, S.,Ebert, B. L.,Zhang, H.,Peng, X.,Bosco, J.,Pretz, J.,Schlanger, R.,Wang, J. Y.,Mak, R. H.,Dombkowski, D. M.,Preffer, F. I.,Scadden, D. T., and Golub, T. R. ( 2008) MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev. Cell. 14, 843853.
  • 45
    Baek, E. J.,Kim, H. S.,Kim, S.,Jin, H.,Choi, T. Y., and Kim, H. O. ( 2008) In vitro clinical-grade generation of red blood cells from human umbilical cord blood CD34+ cells. Transfusion 48, 22352245.
  • 46
    Baron, M. H. and Fraser, S. T. ( 2005) The specification of early hematopoiesis in the mammal. Curr. Opin. Hematol. 12, 217221.
  • 47
    McGrath, K. and Palis, J. ( 2008) Ontogeny of erythropoiesis in the mammalian embryo. Curr. Top. Dev. Biol. 82, 122.
  • 48
    Fraser, S. T.,Isern, J., and Baron, M. H. ( 2007) Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression. Blood 109, 343352.
  • 49
    Kingsley, P. D.,Malik, J.,Emerson, R. L.,Bushnell, T. P.,McGrath, K. E.,Bloedorn, L. A.,Bulger, M., and Palis, J. ( 2006) “Maturational” globin switching in primary primitive erythroid cells. Blood 107, 16651672.
  • 50
    Kingsley, P. D.,Malik, J.,Fantauzzo, K. A., and Palis, J. ( 2004) Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood 104, 1925.
  • 51
    Whitelaw, E.,Tsai, S. F.,Hogben, P., and Orkin, S. H. ( 1990) Regulated expression of globin chains and the erythroid transcription factor GATA-1 during erythropoiesis in the developing mouse. Mol. Cell. Biol. 10, 65966606.
  • 52
    Lux, C. T.,Yoshimoto, M.,McGrath, K.,Conway, S. J.,Palis, J., and Yoder, M. C. ( 2008) All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood 111, 34353438.
  • 53
    Isern, J.,Fraser, S. T.,He, Z., and Baron, M. H. ( 2008) The fetal liver is a niche for maturation of primitive erythroid cells. Proc. Natl. Acad. Sci. USA 105, 66626667.
  • 54
    Carradice, D. and Lieschke, G. J. ( 2008) Zebrafish in hematology: sushi or science? Blood 111, 33313342.
  • 55
    Burns, C. E.,Traver, D.,Mayhall, E.,Shepard, J. L., and Zon, L. I. ( 2005) Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev. 19, 23312342.
  • 56
    Gering, M. and Patient, R. ( 2005) Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev. Cell. 8, 389400.
  • 57
    Stainier, D. Y.,Weinstein, B. M.,Detrich, H. W.,Zon, L. I. III.,Fishman, M. C. ( 1995) Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121, 31413150.
  • 58
    Huber, T. L. and Zon, L. I. ( 1998) Transcriptional regulation of blood formation during Xenopus development. Semin. Immunol. 10, 103109.
  • 59
    Walmsley, M.,Ciau-Uitz, A., and Patient, R. ( 2005) Tracking and programming early hematopoietic cells in Xenopus embryos. Methods Mol. Med. 105, 123136.
  • 60
    Zon, L. I. ( 1995) Developmental biology of hematopoiesis. Blood 86, 28762891.
  • 61
    Sadlon, T. J.,Lewis, I. D., and D'Andrea, R. J. ( 2004) BMP4: its role in development of the hematopoietic system and potential as a hematopoietic growth factor. Stem Cells 22, 457474.
  • 62
    Dieterlen-Lievre, F. ( 1975) On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J. Embryol. Exp. Morphol. 33, 607619.
  • 63
    Caprioli, A.,Jaffredo, T.,Gautier, R.,Dubourg, C., and Dieterlen-Lievre, F. ( 1998) Blood-borne seeding by hematopoietic and endothelial precursors from the allantois. Proc. Natl. Acad. Sci. USA 95, 16411646.
  • 64
    Schroeder, C.,Gibson, L.,Nordstrom, C., and Beug, H. ( 1993) The estrogen receptor cooperates with the TGF alpha receptor (c-erbB) in regulation of chicken erythroid progenitor self-renewal. EMBO J. 12, 951960.
  • 65
    Steinlein, P.,Wessely, O.,Meyer, S.,Deiner, E. M.,Hayman, M. J., and Beug, H. ( 1995) Primary, self-renewing erythroid progenitors develop through activation of both tyrosine kinase and steroid hormone receptors. Curr. Biol. 5, 191204.
  • 66
    Wessely, O.,Deiner, E. M.,Beug, H., and von Lindern, M. ( 1997) The glucocorticoid receptor is a key regulator of the decision between self-renewal and differentiation in erythroid progenitors. EMBO J. 16, 267280.
  • 67
    Wessely, O.,Bauer, A.,Quang, C. T.,Deiner, E. M.,von Lindern, M.,Mellitzer, G.,Steinlein, P.,Ghysdael, J., and Beug, H. ( 1999) A novel way to induce erythroid progenitor self renewal: cooperation of c-Kit with the erythropoietin receptor. Biol. Chem. 380, 187202.
  • 68
    Hayman, M. J.,Meyer, S.,Martin, F.,Steinlein, P., and Beug, H. ( 1993) Self-renewal and differentiation of normal avian erythroid progenitor cells: regulatory roles of the TGF alpha/c-ErbB and SCF/c-kit receptors. Cell 74, 157169.
  • 69
    Beug, H.,Bauer, A.,Dolznig, H.,von Lindern, M.,Lobmayer, L.,Mellitzer, G.,Steinlein, P.,Wessely, O., and Mullner, E. ( 1996) Avian erythropoiesis and erythroleukemia: towards understanding the role of the biomolecules involved. Biochim. Biophys. Acta 1288, M35M47.
  • 70
    McNagny, K. M. and Graf, T. ( 1996) Acute avian leukemia viruses as tools to study hematopoietic cell differentiation. Curr. Top. Microbiol. Immunol. 212, 143162.
  • 71
    Nielsen, J. S.,Doyonnas, R., and McNagny, K. M. ( 2002) Avian models to study the transcriptional control of hematopoietic lineage commitment and to identify lineage-specific genes. Cells Tissues Organs 171, 4463.
  • 72
    Kim, S. I. and Bresnick, E. H. ( 2007) Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 26, 67776794.
  • 73
    Smith, T. G.,Robbins, P. A., and Ratcliffe, P. J. ( 2008) The human side of hypoxia-inducible factor. Br. J. Hematol. 141, 325334.
  • 74
    Jelkmann, M. ( 2004) Molecular biology of erythropoietin. Intern. Med. 43, 649659.
  • 75
    Rogers, H. M.,Yu, X.,Wen, J.,Smith, R.,Fibach, E., and Noguchi, C. T. ( 2008) Hypoxia alters progression of the erythroid program. Exp. Hematol. 36, 1727.
  • 76
    Freeburg, P. B. and Abrahamson, D. R. ( 2003) Hypoxia-inducible factors and kidney vascular development. J. Am. Soc. Nephrol. 14, 27232730.
  • 77
    Semenza, G. L.,Nejfelt, M. K.,Chi, S. M., and Antonarakis, S. E. ( 1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc. Natl. Acad. Sci. USA 88, 56805684.
  • 78
    Semenza, G. and Wang, G. ( 1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12, 54475454.
  • 79
    Wang, G. L. and Semenza, G. L. ( 1995) Purification and characterization of HIF-1. J. Biol. Chem. 270, 12301237.
  • 80
    Hoffman, E. C.,Reyes, H.,Chuff, E. J.,Sander, F., and Conley, L. H. ( 1991) Cloning of a factor required for activation of the Ah (dioxin) receptor. Science 252, 954958.
  • 81
    Mylonis, I.,Chachami, G.,Paraskeva, E., and Simos, G. ( 2008) Atypical CRM1-dependent nuclear export signal mediates regulation of hypoxia-inducible factor-1alpha by MAPK. J. Biol. Chem. 283, 2762027627.
  • 82
    Percy, M. L. ( 2007) Genetically heterogeneous origins of idiopathic erythrocytosis. Hematology 12, 131139.
  • 83
    Ang, S.,Chen, H.,Hirota, K.,Gordeuk, V.,Jelinek, J.,Guan, Y.,Liu, E.,Sergueeva, A.,Miasnikova, G.,Mole, D.,Maxwell, P.,Stockton, D.,Semenza, G., and Prchal, J. ( 2002) Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat. Genet. 32, 614621.
  • 84
    Percy, M. J.,Furlow, P. W.,Beer, P. A.,Lappin, T. R.,McMullin, M. F., and Lee, F. S. ( 2007) A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove. Blood 110, 21932196.
  • 85
    Scortegagna, M.,Ding, K.,Zhang, Q.,Oktay, Y.,Bennett, M. J.,Bennett, M.,Shelton, J. M.,Richardson, J. A.,Moe, O., and Garcia, J. A. ( 2005) HIF-2α regulates murine hematopoietic development in an erythropoietin-dependent manner. Blood 105, 31333140.
  • 86
    Rankin, E. B.,Biju, M. P.,Liu, Q.,Unger, T. L.,Rha, J.,Johnson, R. S.,Simon, M. C.,Keith, B., and Haase, V. H. ( 2007) Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Invest. 117, 10681077.
  • 87
    Percy, M. J.,Furlow, P. W.,Lucas, G. S.,Li, X.,Lappin, T. R.,McMullin, M. F., and Lee, F. S. ( 2008) A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 358, 162168.
  • 88
    Yamashita, T.,Ohneda, O.,Sakiyama, A.,Iwata, F.,Ohneda, K., and Fujii-Kuriyama, Y. ( 2008) The microenvironment for erythropoiesis is regulated by HIF-2α through VCAM-1 in endothelial cells. Blood 112, 14821492.
  • 89
    Fandrey, J. ( 2008) Erythropoiesis-once more HIF. Blood 112, 931932.
  • 90
    Fruehauf, J. P. and Meyskens, F. L.Jr. ( 2007) Reactive oxygen species: a breath of life or death? Clin. Cancer Res. 13, 789794.
  • 91
    Hattangadi, S. M. and Lodish, H. F. ( 2007) Regulation of erythrocyte lifespan: do reactive oxygen species set the clock? J. Clin. Invest. 117, 20752077.
  • 92
    Marinkovic, D.,Zhang, X.,Yalcin, S.,Luciano, J. P.,Brugnara, C.,Huber, T., and Ghaffari, S. ( 2007) Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J. Clin. Invest. 117, 21332144.
  • 93
    Bakker, W. J.,Blázquez-Domingo, M.,Kolbus, A.,Besooyen, J.,Steinlein, P.,Beug, H.,Coffer, P. J.,Löwenberg, B.,von Lindern, M., and van Dijk, T. B. ( 2004) FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J. Cell Biol. 164, 175184.
  • 94
    Bakker, W. J.,van Dijk, T. B.,Parren-van Amelsvoort, M.,Kolbus, A.,Yamamoto, K.,Steinlein, P.,Verhaak, R. G.,Mak, T. W.,Beug, H.,Löwenberg, B., and von Lindern, M. ( 2007) Differential regulation of Foxo3a target genes in erythropoiesis. Mol. Cell. Biol. 27, 38393854.
  • 95
    Nemeth, E. ( 2008) Iron regulation and erythropoiesis. Curr. Opin. Hematol. 15, 169175.
  • 96
    Andrews, N. C. ( 2008) Forging a field: the golden age of iron biology. Blood 112, 219230.
  • 97
    De Domenico, I.,Ward, D. M., and Kaplan, J. ( 2007) Hepcidin regulation: ironing out the details. J. Clin. Invest. 117, 17551758.
  • 98
    Nemeth, M. J. and Bodine, D. M. ( 2007) Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways. Cell Res. 17, 746758.
  • 99
    Wrighting, D. M. and Andrews, N. C. ( 2006) Interleukin-6 induces hepcidin expression through STAT3. Blood 108, 32043209.
  • 100
    Babitt, J. L.,Huang, F. W.,Wrighting, D. M.,Xia, Y.,Sidis, Y.,Samad, T. A.,Campagna, J. A.,Chung, R. T.,Schneyer, A. L.,Woolf, C. J.,Andrews, N. C., and Lin, H. Y. ( 2006) Bone morphogenetic protein signalling by hemojuvelin regulates hepcidin expression. Nat. Genet. 38, 531539.
  • 101
    Babitt, J. L.,Huang, F. W.,Xia, Y.,Sidis, Y.,Andrews, N. C., and Lin, H. Y. ( 2007) Modulation of bone morphogenetic protein signalling in vivo regulates systemic iron balance. J. Clin. Invest. 117, 19331939.
  • 102
    Lin, L.,Valore, E. V.,Nemeth, E.,Goodnough, J. B.,Gabayan, V., and Ganz, T. ( 2007) Iron transferrin regulates hepcidin synthesis in primary hepatocyte culture through hemojuvelin and BMP2/4. Blood 110, 21822189.
  • 103
    Peyssonnaux, C.,Zinkernagel, A. S.,Schuepbach, R. A.,Rankin, E.,Vaulont, S.,Haase, V. H.,Nizet, V., and Johnson, R. S. ( 2007) Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J. Clin. Invest. 117, 19261932.
  • 104
    Muckenthaler, M. U.,Galy, B., and Hentze, M. W. ( 2008) Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu. Rev. Nutr. 28, 197213.
  • 105
    Hentze, M. W. and Kühn L. C. ( 1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl. Acad. Sci. USA 93, 81758182.
  • 106
    Wang, J.,Chen, G.,Muckenthaler, M.,Galy, B.,Hentze, M. W., and Pantopoulos, K. ( 2004) Iron-mediated degradation of IRP2, an unexpected pathway involving a 2-oxoglutarate-dependent oxygenase activity. Mol. Cell. Biol. 24, 954965.
  • 107
    Wang, J. and Pantopoulos, K. ( 2005) The pathway for IRP2 degradation involving 2-oxoglutarate-dependent oxygenase(s) does not require the E3 ubiquitin ligase activity of pVHL. Biochem. Biophys. Acta 1743, 7985.
  • 108
    Sanchez, M.,Galy, B.,Muckenthaler, M. U., and Hentze, M. W. ( 2007) Iron-regulatory proteins limit hypoxia-inducible factor-2a expression in iron deficiency. Nat. Struct. Mol. Biol. 14, 420426.
  • 109
    Kerenyi, M. A.,Grebien, F.,Gehart, H.,Schifrer, M.,Artaker, M.,Kovacic, B.,Beug, H.,Moriggl, R., and Mullner, E. W. ( 2008) Stat 5 regulates cellular iron uptake of erythroid cells via IRP-2 and TfR-1. Blood 112, 38783888.
  • 110
    Grebien, F.,Kerenyi, M. A.,Kovacic, B.,Kolbe, T.,Becker, V.,Dolznig, H.,Pfeffer, K.,Klingmüller, U.,Müller, M.,Beug, H.,Müllner, E. W., and Moriggl, R. ( 2008) Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2. Blood 111, 45114522.
  • 111
    Dos Santos, C. O.,Dore, L. C.,Valentine, E.,Shelat, S. G.,Hardison, R. C.,Ghosh, M.,Wang, W.,Eisenstein, R. S.,Costa, F. F., and Weiss, M. J. ( 2008) An iron responsive element-like stem-loop regulates α-hemoglobin-stabilizing protein mRNA. J. Biol. Chem. 283, 2695626964.
  • 112
    Elorza, A. A.,Hyde, B. B.,Mikkola, H. K.,Collins, S., and Shirihai, O. S. ( 2008) UCP2 modulates cell proliferation through the MAPK/ERK pathway during erythropoiesis and has no effect on heme biosynthesis. J. Biol. Chem. 283, 3046130470.
  • 113
    Blank, U.,Karlsson, G., and Karlsson, S. ( 2008) Signaling pathways governing stem-cell fate. Blood 111, 492503.
  • 114
    Campbell, C.,Risueno, R. M.,Salati, S.,Guezguez, B., and Bhatia, M. ( 2008) Signal control of hematopoietic stem cell fate: Wnt, Notch, and Hedgehog as the usual suspects. Curr. Opin. Hematol. 15, 319325.
  • 115
    Zhang, C. C. and Lodish, H. F. ( 2008) Cytokines regulating hematopoietic stem cell function. Curr. Opin. Hematol. 15, 307311.
  • 116
    Edling, C. E. and Hallberg, B. ( 2007) c-Kit: a hematopoietic cell essential receptor tyrosine kinase. Int. J. Biochem. Cell Biol. 39, 19951998.
  • 117
    Kent, D.,Copley, M.,Benz, C.,Dykstra, B.,Bowie, M., and Eaves, C. ( 2008) Regulation of hematopoietic stem cells by the steel factor/KIT signaling pathway. Clin. Cancer Res. 14, 19261930.
  • 118
    Scholl, C.,Gilliland, D. G., and Fröhling, S. ( 2008) Deregulation of signaling pathways in acute myeloid leukemia. Semin. Oncol. 35, 336345.
  • 119
    Roskoski, R.Jr. ( 2005) Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor. Biochem. Biophys. Res. Commun. 337, 113.
  • 120
    Sattler, M. and Salgia, R. ( 2004) Targeting c-Kit mutations: basic science to novel therapies. Leuk. Res. 28, S11S20.
  • 121
    Lennartsson, J. and Rönnstrand, L. ( 2006) The stem cell factor receptor/c-Kit as a drug target in cancer. Curr. Cancer Drug Targets 6, 6575.
  • 122
    Staal, F. J. and Clevers, H. C. ( 2005) Wnt signaling and haematopoiesis: a Wnt-Wnt situation. Nat. Rev. Immunol. 5, 2130.
  • 123
    Austin, T. W.,Solar, G. P.,Ziegler, F. C.,Liem, L., and Matthews, W. ( 1997) A role for the Wnt gene family in hematopoiesis: expansion of multi-lineage progenitor cells. Blood 89, 36243635.
  • 124
    Van Den Berg, D. J.,Sharma, A. K.,Bruno, E., and HoVman, R. ( 1998) Role of members of the Wnt gene family in human hematopoiesis. Blood 92, 31893202.
  • 125
    Reya, T.,Duncan, A. W.,Ailles, L.,Domen, J.,Scherer, D. C.,Willert, K.,Hintz, L.,Nusse, R., and Weissman, I. L. ( 2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409414.
  • 126
    Willert, K.,Brown, J. D.,Danenberg, E.,Duncan, A. W.,Weissman, I. L.,Reya, T.,Yates, J. R., and Nusse, R. ( 2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448452.
  • 127
    Ohishi, K.,Varnum-Finney, B., and Bernstein, I. D. ( 2002) The Notch pathway: modulation of cell fate decisions in hematopoiesis. Int. J. Hematol. 75, 449459.
  • 128
    Cheng, X.,Huber, T. L.,Chen, V. C.,Gadue, P., and Keller, G. M. ( 2008) Numb mediates the interaction between Wnt and Notch to modulate primitive erythropoietic specification from the hemangioblast. Development 135, 34473458.
  • 129
    Shelly, S. L.,Fuchs, C., and Miele, L. ( 1999) Notch-1 inhibits apoptosis in murine erythroleukemia cells and is necessary for differentiation induced by hybrid polar compounds. J. Cell Biochem. 73, 164175.
  • 130
    Jang, M. S.,Miao, H.,Carlesso, N.,Shelly, L.,Zlobin, A.,Darack, N.,Qin, J. Z.,Nickoloff, B. J., and Miele, L. ( 2004) Notch-1 regulates cell death independently of differentiation in murine erythroleukemia cells through multiple apoptosis and cell cycle pathways. J. Cell Physiol. 199, 418433.
  • 131
    Duncan, A. W.,Rattis, F. M.,DiMascio, L. N.,Congdon, K. L.,Pazianos, G.,Zhao, C.,Yoon, K.,Cook, J. M.,Willert, K.,Gaiano, N., and Reya, T. ( 2005) Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol. 6, 314322.
  • 132
    Ganapati, U.,Tan, H. T.,Lynch, M.,Dolezal, M.,de Vos, S., and Gasson, J. C. ( 2007) Modelling Notch signaling in normal and neoplastic hematopoiesis: global gene expression profiling in response to activated notch expression. Stem Cells 25, 18721880.
  • 133
    Hayward, P.,Brennan, K.,Sanders, P.,Balayo, T.,DasGupta, R.,Perrimon, N., and Martinez Arias, A. ( 2005) Notch modulates Wnt signalling by associating with Armadillo/beta-catenin and regulating its transcriptional activity. Development 132, 18191830.
  • 134
    Witthuhn, B. A.,Quelle, F. W.,Silvennoinen, O.,Yi, T.,Tang, B.,Miura, O., and Ihle, J. N. ( 1993) JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74, 227236.
  • 135
    Miura, O.,Nakamura, N.,Quelle, F. W.,Witthuhn, B. A.,Ihle, J. N., and Aoki, N. ( 1994) Erythropoietin induces association of the JAK2 protein tyrosine kinase with the erythropoietin receptor in vivo. Blood 84, 15011507.
  • 136
    Elliott, S.,Pham, E., and Macdougall, I. C. ( 2008) Erythropoietins: a common mechanism of action. Exp. Hematol. 36, 15731584.
  • 137
    Richmond, T. D.,Chohan, M., and Barber, D. L. ( 2005) Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol. 15, 146155.
  • 138
    Tong, W.,Zhang, J., and Lodish, H. F. ( 2005) Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood 105, 46044612.
  • 139
    Cantor, A. B. and Orkin, S. H. ( 2002) Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 21, 33683376.
  • 140
    Perry, C. and Soreq, H. ( 2002) Transcriptional regulation of erythropoiesis. Fine tuning of combinatorial multi-domain elements. Eur. J. Biochem. 269, 36073618.
  • 141
    Evans, T. and Felsenfeld, G. ( 1989) The erythroid-specific transcription factor Eryf1: a new finger protein. Cell 58, 877885.
  • 142
    Tsai, S. F.,Martin, D. I.,Zon, L. I.,D'Andrea, A. D.,Wong, G. G., and Orkin, S. H. ( 1989) Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 339, 446451.
  • 143
    Akashi, K.,He, X.,Chen, J.,Iwasaki, H.,Niu, C.,Steenhard, B.,Zhang, J.,Haug, J., and Li, L. ( 2003) Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood 101, 383389.
  • 144
    Cross, M. A. and Enver, T. ( 1997) The lineage commitment of haemopoietic progenitor cells. Curr. Opin. Genet. Dev. 7, 609613.
  • 145
    Molkentin, J. D. ( 2000) The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J. Biol. Chem. 275, 3894938952.
  • 146
    Patient, R. K. and McGhee, J. D. ( 2002) The GATA family (vertebrates and invertebrates). Curr. Opin. Genet. Dev. 12, 416422.
  • 147
    Weiss, M. J. and Orkin, S. H. ( 1995) GATA transcription factors: key regulators of hematopoiesis. Exp. Hematol. 23, 99107.
  • 148
    Ferreira, R.,Ohneda, K.,Yamamoto, M., and Philipsen, S. ( 2005) GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol. Cell. Biol. 25, 12151227.
  • 149
    Gutierrez, L.,Nikolic, T.,van Dijk, T. B.,Hammad, H.,Vos, N.,Willart, M.,Grosveld, F.,Philipsen, S., and Lambrecht, B. N. ( 2007) Gata1 regulates dendritic-cell development and survival. Blood 110, 19331941.
  • 150
    Orkin, S. H. ( 1992) GATA-binding transcription factors in hematopoietic cells. Blood 80, 575581.
  • 151
    Trainor, C. D.,Omichinski, J. G.,Vandergon, T. L.,Gronenborn, A. M.,Clore, G. M., and Felsenfeld, G. ( 1996) A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction. Mol. Cell. Biol. 16, 22382247.
  • 152
    Fujiwara, Y.,Browne, C. P.,Cunniff, K.,Goff, S. C., and Orkin, S. H. ( 1996) Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc. Natl. Acad. Sci. USA 93, 1235512358.
  • 153
    Pevny, L.,Simon, M. C.,Robertson, E.,Klein, W. H.,Tsai, S. F.,D'Agati, V.,Orkin, S. H., and Costantini, F. ( 1991) Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349, 257260.
  • 154
    Pevny, L.,Lin, C. S.,D'Agati, V.,Simon, M. C.,Orkin, S. H., and Costantini, F. ( 1995) Development of hematopoietic cells lacking transcription factor GATA-1. Development 121, 163172.
  • 155
    Pan, X.,Ohneda, O.,Ohneda, K.,Lindeboom, F.,Iwata, F.,Shimizu, R.,Nagano, M.,Suwabe, N.,Philipsen, S.,Lim, K. C.,Engel, J. D., and Yamamoto, M. ( 2005) Graded levels of GATA-1 expression modulate survival, proliferation, and differentiation of erythroid progenitors. J. Biol. Chem. 280, 2238522394.
  • 156
    Heyworth, C.,Pearson, S.,May, G., and Enver, T. ( 2002) Transcription factor-mediated lineage switching reveals plasticity in primary committed progenitor cells. EMBO J. 21, 37703781.
  • 157
    Iwasaki, H.,Mizuno, S.,Wells, R. A.,Cantor, A. B.,Watanabe, S., and Akashi, K. ( 2003) GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages. Immunity 19, 451462.
  • 158
    Graf, T. ( 2002) Differentiation plasticity of hematopoietic cells. Blood 99, 30893101.
  • 159
    Ney, P. A. ( 2006) Gene expression during terminal erythroid differentiation. Curr. Opin. Hematol. 13, 203208.
  • 160
    Bresnick, E. H.,Martowicz, M. L.,Pal, S., and Johnson, K. D. ( 2005) Developmental control via GATA factor interplay at chromatin domains. J. Cell Physiol. 205, 19.
  • 161
    Rodriguez, P.,Bonte, E.,Krijgsveld, J.,Kolodziej, K. E.,Guyot, B.,Heck, A. J.,Vyas, P.,de Boer, E.,Grosveld, F., and Strouboulis, J. ( 2005) GATA-1 forms distinct activating and repressive complexes in erythroid cells. EMBO J. 24, 23542366.
  • 162
    Lowry, J. A. and Mackay, J. P. ( 2006) GATA-1: one protein, many partners. Int. J. Biochem. Cell Biol. 38, 611.
  • 163
    Crossley, M. and Orkin, S. H. ( 1994) Phosphorylation of the erythroid transcription factor GATA-1. J. Biol. Chem. 269, 1658916596.
  • 164
    Rooke, H. M. and Orkin, S. H. ( 2006) Phosphorylation of Gata1 at serine residues 72, 142, and 310 is not essential for hematopoiesis in vivo. Blood 107, 35273530.
  • 165
    Boyes, J.,Byfield, P.,Nakatani, Y., and Ogryzko, V. ( 1998) Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396, 594598.
  • 166
    Hung, H. L.,Lau, J.,Kim, A. Y.,Weiss, M. J., and Blobel, G. A. ( 1999) CREB-Binding protein acetylates hematopoietic transcription factor GATA-1 at functionally important sites. Mol. Cell. Biol. 19, 34963505.
  • 167
    Lamonica, J. M.,Vakoc, C. R., and Blobel, G. A. ( 2006) Acetylation of GATA-1 is required for chromatin occupancy. Blood 108, 37363738.
  • 168
    Hernandez-Hernandez, A.,Ray, P.,Litos, G.,Ciro, M.,Ottolenghi, S.,Beug, H., and Boyes, J. ( 2006) Acetylation and MAPK phosphorylation cooperate to regulate the degradation of active GATA-1. EMBO J. 25, 32643274.
  • 169
    Collavin, L.,Gostissa, M.,Avolio, F.,Secco, P.,Ronchi, A.,Santoro, C.,Del Sal, G. ( 2004) Modification of the erythroid transcription factor GATA-1 by SUMO-1. Proc. Natl. Acad. Sci. USA 101, 88708875.
  • 170
    De Maria, R.,Zeuner, A.,Eramo, A.,Domenichelli, C.,Bonci, D.,Grignani, F.,Srinivasula, S. M.,Alnemri, E. S.,Testa, U., and Peschle, C. ( 1999) Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1. Nature 401, 489493.
  • 171
    Whyatt, D.,Lindeboom, F.,Karis, A.,Ferreira, R.,Milot, E.,Hendriks, R.,de Bruijn, M.,Langeveld, A.,Gribnau, J.,Grosveld, F., and Philipsen, S. ( 2000) An intrinsic but cell-nonautonomous defect in GATA-1-overexpressing mouse erythroid cells. Nature 406, 519524.
  • 172
    Gutierrez, L.,Lindeboom, F.,Langeveld, A.,Grosveld, F.,Philipsen, S., and Whyatt, D. ( 2004) Homotypic signalling regulates Gata1 activity in the erythroblastic island. Development 131, 31833193.
  • 173
    Munugalavadla, V.,Dore, L. C.,Tan, B. L.,Hong, L.,Vishnu, M.,Weiss, M. J., and Kapur, R. ( 2005) Repression of c-kit and its downstream substrates by GATA-1 inhibits cell proliferation during erythroid maturation. Mol. Cell. Biol. 25, 67476759.
  • 174
    Choe, K. S.,Radparvar, F.,Matushansky, I.,Rekhtman, N.,Han, X., and Skoultchi, A. I. ( 2003) Reversal of tumorigenicity and the block to differentiation in erythroleukemia cells by GATA-1. Cancer Res. 63, 63636369.
  • 175
    Hino, M.,Nishizawa, Y.,Tatsumi, N.,Tojo, A., and Morii, H. ( 1995) Down-modulation of c-kit mRNA and protein expression by erythroid differentiation factor/activin A. FEBS Lett. 374, 6971.
  • 176
    Dore, L. C.,Amigo, J. D.,Dos Santos, C. O.,Zhang, Z.,Gai, X.,Tobias, J. W.,Yu, D.,Klein, A. M.,Dorman, C.,Wu, W.,Hardison, R. C.,Paw, B. H., and Weiss, M. J. ( 2008) A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc. Natl. Acad. Sci. USA 105, 33333338.
  • 177
    Tsang, A. P.,Visvader, J. E.,Turner, C. A.,Fujiwara, Y.,Yu, C.,Weiss, M. J.,Crossley, M., and Orkin, S. H. ( 1997) FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90, 109119.
  • 178
    Fox, A. H.,Liew, C.,Holmes, M.,Kowalski, K.,Mackay, J., and Crossley, M. ( 1999) Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J. 18, 28122822.
  • 179
    Tsang, A. P.,Fujiwara, Y.,Hom, D. B., and Orkin, S. H. ( 1998) Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev. 12, 11761188.
  • 180
    Crispino, J. D.,Lodish, M. B.,MacKay, J. P., and Orkin, S. H. ( 1999) Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol. Cell 3, 219228.
  • 181
    Nichols, K. E.,Crispino, J. D.,Poncz, M.,White, J. G.,Orkin, S. H.,Maris, J. M., and Weiss, M. J. ( 2000) Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat. Genet. 24, 266270.
  • 182
    Hong, W.,Nakazawa, M.,Chen, Y. Y.,Kori, R.,Vakoc, C. R.,Rakowski, C., and Blobel, G. A. ( 2005) FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J. 24, 23672378.
  • 183
    Vakoc, C. R.,Letting, D. L.,Gheldof, N.,Sawado, T.,Bender, M. A.,Groudine, M.,Weiss, M. J.,Dekker, J., and Blobel, G. A. ( 2005) Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol. Cell 17, 453462.
  • 184
    Cantor, A. B.,Iwasaki, H.,Arinobu, Y.,Moran, T. B.,Shigematsu, H.,Sullivan, M. R.,Akashi, K., and Orkin, S. H. ( 2008) Antagonism of FOG-1 and GATA factors in fate choice for the mast cell lineage. J. Exp. Med. 205, 611624.
  • 185
    Querfurth, E.,Schuster, M.,Kulessa, H.,Crispino, J. D.,Doderlein, G.,Orkin, S. H.,Graf, T., and Nerlov, C. ( 2000) Antagonism between C/EBPbeta and FOG in eosinophil lineage commitment of multipotent hematopoietic progenitors. Genes Dev. 14, 25152525.
  • 186
    Buck, I.,Morceau, F.,Cristofanon, S.,Heintz, C.,Chateauvieux, S.,Reuter, S.,Dicato, M., and Diederich, M. ( 2008) Tumor necrosis factor alpha inhibits erythroid differentiation in human erythropoietin-dependent cells involving p38 MAPK pathway, GATA-1 and FOG-1 downregulation and GATA-2 upregulation. Biochem. Pharmacol. 76, 12291239.
  • 187
    Jing, H.,Vakoc, C. R.,Ying, L.,Mandat, S.,Wang, H.,Zheng, X., and Blobel, G. A. ( 2008) Exchange of GATA factors mediates transitions in looped chromatin organization at a developmentally regulated gene locus. Mol. Cell 29, 232242.
  • 188
    Porcher, C.,Swat, W.,Rockwell, K.,Fujiwara, Y.,Alt, F. W., and Orkin, S. H. ( 1996) The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86, 4757.
  • 189
    Robb, L.,Lyons, I.,Li, R.,Hartley, L.,Kontgen, F.,Harvey, R. P.,Metcalf, D., and Begley, C. G. ( 1995) Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc. Natl. Acad. Sci. USA 92, 70757079.
  • 190
    Shivdasani, R. A.,Mayer, E. L., and Orkin, S. H. ( 1995) Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432434.
  • 191
    Mikkola, H. K.,Klintman, J.,Yang, H.,Hock, H.,Schlaeger, T. M.,Fujiwara, Y., and Orkin, S. H. ( 2003) Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 421, 547551.
  • 192
    Goardon, N.,Lambert, J. A.,Rodriguez, P.,Nissaire, P.,Herblot, S.,Thibault, P.,Dumenil, D.,Strouboulis, J.,Romeo, P. H., and Hoang, T. ( 2006) ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO J. 25, 357366.
  • 193
    Schuh, A. H.,Tipping, A. J.,Clark, A. J.,Hamlett, I.,Guyot, B.,Iborra, F. J.,Rodriguez, P.,Strouboulis, J.,Enver, T.,Vyas, P., and Porcher, C. ( 2005) ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis. Mol. Cell. Biol. 25, 1023510250.
  • 194
    Wadman, I.,Li, J.,Bash, R. O.,Forster, A.,Osada, H.,Rabbitts, T. H., and Baer, R. ( 1994) Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J. 13, 48314839.
  • 195
    Wadman, I. A.,Osada, H.,Grutz, G. G.,Agulnick, A. D.,Westphal, H.,Forster, A., and Rabbitts, T. H. ( 1997) The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16, 31453157.
  • 196
    Cohen-Kaminsky, S.,Maouche-Chretien, L.,Vitelli, L.,Vinit, M. A.,Blanchard, I.,Yamamoto, M.,Peschle, C., and Romeo, P. H. ( 1998) Chromatin immunoselection defines a TAL-1 target gene. EMBO J. 17, 51515160.
  • 197
    Anderson, K. P.,Crable, S. C., and Lingrel, J. B. ( 1998) Multiple proteins binding to a GATA-E box-GATA motif regulate the erythroid Krüppel-like factor (EKLF) gene. J. Biol. Chem. 273, 1434714354.
  • 198
    Valverde-Garduno, V.,Guyot, B.,Anguita, E.,Hamlett, I.,Porcher, C., and Vyas, P. ( 2004) Differences in the chromatin structure and cis-element organization of the human and mouse GATA1 loci: implications for cis-element identification. Blood 104, 31063116.
  • 199
    Warren, A. J.,Colledge, W. H.,Carlton, M. B.,Evans, M. J.,Smith, A. J., and Rabbitts, T. H. ( 1994) The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 78, 4557.
  • 200
    Mead, P. E.,Kelley, C. M.,Hahn, P. S.,Piedad, O., and Zon, L. I. ( 1998) SCL specifies hematopoietic mesoderm in Xenopus embryos. Development 125, 26112620.
  • 201
    Mead, P. E.,Deconinck, A. E.,Huber, T. L.,Orkin, S. H., and Zon, L. I. ( 2001) Primitive erythropoiesis in the Xenopus embryo: the synergistic role of LMO-2, SCL and GATA-binding proteins. Development 128, 23012308.
  • 202
    Meier, N.,Krpic, S.,Rodriguez, P.,Strouboulis, J.,Monti, M.,Krijgsveld, J.,Gering, M.,Patient, R.,Hostert, A., and Grosveld, F. ( 2006) Novel binding partners of Ldb1 are required for haematopoietic development. Development 133, 49134923.
  • 203
    Perkins, A. ( 1999) Erythroid Kruppel like factor: from fishing expedition to gourmet meal. Int. J. Biochem. Cell Biol. 31, 11751192.
  • 204
    Bieker, J. J. ( 2005) Probing the onset and regulation of erythroid cell-specific gene expression. Mt Sinai J. Med. 72, 333338.
  • 205
    Drissen, R.,von Lindern, M.,Kolbus, A.,Driegen, S.,Steinlein, P.,Beug, H.,Grosveld, F., and Philipsen, S. ( 2005) The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol. Cell. Biol. 25, 52055214.
  • 206
    Gregory, R. C.,Taxman, D. J.,Seshasayee, D.,Kensinger, M. H.,Bieker, J. J., and Wojchowski, D. M. ( 1996) Functional interaction of GATA1 with erythroid Krüppel-like factor and Sp1 at defined erythroid promoters. Blood 87, 17931801.
  • 207
    Merika, M. and Orkin, S. H. ( 1995) Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Krüppel family proteins Sp1 and EKLF. Mol. Cell. Biol. 15, 24372447.
  • 208
    Feng, W. C.,Southwood, C. M., and Bieker, J. J. ( 1994) Analyses of beta-thalassemia mutant DNA interactions with erythroid Krüppel-like factor (EKLF), an erythroid cell-specific transcription factor. J. Biol. Chem. 269, 14931500.
  • 209
    Orkin, S. H.,Kazazian, H. H.Jr.,Antonarakis, S. E.,Goff, S. C.,Boehm, C. D.,Sexton, J. P.,Waber, P. G., and Giardina, P. J. ( 1982) Linkage of beta-thalassaemia mutations and beta-globin gene polymorphisms with DNA polymorphisms in human beta-globin gene cluster. Nature 296, 627631.
  • 210
    Nuez, B.,Michalovich, D.,Bygrave, A.,Ploemacher, R., and Grosveld, F. ( 1995) Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature 375, 316318.
  • 211
    Perkins, A. C.,Sharpe, A. H., and Orkin, S. H. ( 1995) Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375, 318322.
  • 212
    Wijgerde, M.,Gribnau, J.,Trimborn, T.,Nuez, B.,Philipsen, S.,Grosveld, F., and Fraser, P. ( 1996) The role of EKLF in human beta-globin gene competition. Genes Dev. 10, 28942902.
  • 213
    Drissen, R.,Palstra, R. J.,Gillemans, N.,Splinter, E.,Grosveld, F.,Philipsen, S.,de Laat, W. ( 2004) The active spatial organization of the beta-globin locus requires the transcription factor EKLF. Genes Dev. 18, 24852490.
  • 214
    Hodge, D.,Coghill, E.,Keys, J.,Maguire, T.,Hartmann, B.,McDowall, A.,Weiss, M.,Grimmond, S., and Perkins, A. ( 2006) A global role for EKLF in definitive and primitive erythropoiesis. Blood 107, 33593370.
  • 215
    Pilon, A. M.,Arcasoy, M. O.,Dressman, H. K.,Vayda, S. E.,Maksimova, Y. D.,Sangerman, J. I.,Gallagher, P. G., and Bodine, D. M. ( 2008) Failure of terminal erythroid differentiation in EKLF-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2. Mol. Cell. Biol. 28, 73947401.
  • 216
    Bouilloux, F.,Juban, G.,Cohet, N.,Buet, D.,Guyot, B.,Vainchenker, W.,Louache, F., and Morle, F. ( 2008) EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation. Blood 112, 576584.
  • 217
    Frontelo, P.,Manwani, D.,Galdass, M.,Karsunky, H.,Lohmann, F.,Gallagher, P. G., and Bieker, J. J. ( 2007) Novel role for EKLF in megakaryocyte lineage commitment. Blood 110, 38713880.
  • 218
    Siatecka, M.,Xue, L., and Bieker, J. J. ( 2007) Sumoylation of EKLF promotes transcriptional repression and is involved in inhibition of megakaryopoiesis. Mol. Cell. Biol. 27, 85478560.
  • 219
    Gilks, C. B.,Bear, S. E.,Grimes, H. L., and Tsichlis, P. N. ( 1993) Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth following activation of a gene (Gfi-1) encoding a novel zinc finger protein. Mol. Cell. Biol. 13, 17591768.
  • 220
    Duan, Z. and Horwitz, M. ( 2003) Gfi-1 oncoproteins in hematopoiesis. Hematology 8, 339344.
  • 221
    Osawa, M.,Yamaguchi, T.,Nakamura, Y.,Kaneko, S.,Onodera, M.,Sawada, K.,Jegalian, A.,Wu, H.,Nakauchi, H., and Iwama, A. ( 2002) Erythroid expansion mediated by the Gfi-1B zinc finger protein: role in normal hematopoiesis. Blood 100, 27692777.
  • 222
    Saleque, S.,Cameron, S., and Orkin, S. H. ( 2002) The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev. 16, 301306.
  • 223
    Huang, D. Y.,Kuo, Y. Y., and Chang, Z. F. ( 2005) GATA-1 mediates auto-regulation of Gfi-1B transcription in K562 cells. Nucleic Acids Res. 33, 53315342.
  • 224
    Jegalian, A. G. and Wu, H. ( 2002) Regulation of Socs gene expression by the proto-oncoprotein GFI-1B: two routes for STAT5 target gene induction by erythropoietin. J. Biol. Chem. 277, 23452352.
  • 225
    Tong, B.,Grimes, H. L.,Yang, T. Y.,Bear, S. E.,Qin, Z.,Du, K.,El-Deiry, W. S., and Tsichlis, P. N. ( 1998) The Gfi-1B proto-oncoprotein represses p21WAF1 and inhibits myeloid cell differentiation. Mol. Cell. Biol. 18, 24622473.
  • 226
    Liu, P.,Keller, J. R.,Ortiz, M.,Tessarollo, L.,Rachel, R. A.,Nakamura, T.,Jenkins, N. A., and Copeland, N. G. ( 2003) Bcl11a is essential for normal lymphoid development. Nat. Immunol. 4, 525532.
  • 227
    Menzel, S.,Garner, C.,Gut, I.,Matsuda, F.,Yamaguchi, M.,Heath, S.,Foglio, M.,Zelenika, D.,Boland, A.,Rooks, H.,Best, S.,Spector, T. D.,Farrall, M.,Lathrop, M., and Thein, S. L. ( 2007) A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat. Genet. 39, 11971199.
  • 228
    Lettre, G.,Sankaran, V. G.,Bezerra, M. A.,Araújo, A. S.,Uda, M.,Sanna, S.,Cao, A.,Schlessinger, D.,Costa, F. F.,Hirschhorn, J. N., and Orkin, S. H. ( 2008) DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc. Natl. Acad. Sci. USA 105, 1186911874.
  • 229
    Uda, M.,Galanello, R.,Sanna, S.,Lettre, G.,Sankaran, V. G.,Chen, W.,Usala, G.,Busonero, F.,Maschio, A.,Albai, G.,Piras, M. G.,Sestu, N.,Lai, S.,Dei, M.,Mulas, A.,Crisponi, L.,Naitza, S.,Asunis, I.,Deiana, M.,Nagaraja, R.,Perseu, L.,Satta, S.,Cipollina, M. D.,Sollaino, C.,Moi, P.,Hirschhorn, J. N.,Orkin, S. H.,Abecasis, G. R.,Schlessinger, D., and Cao, A. ( 2008) Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc. Natl. Acad. Sci. USA 105, 16201625.
  • 230
    Sedgewick, A. E.,Timofeev, N.,Sebastiani, P.,So, J. C.,Ma, E. S.,Chan, L. C.,Fucharoen, G.,Fucharoen, S.,Barbosa, C. G.,Vardarajan, B. N.,Farrer, L. A.,Baldwin, C. T.,Steinberg, M. H., and Chui, D. H. ( 2008) BCL11A is a major HbF quantitative trait locus in three different populations with beta-hemoglobinopathies. Blood Cells Mol. Dis. 41, 255258.
  • 231
    Sankaran, V. G.,Menne, T. F.,Xu, J.,Akie, T. E.,Lettre, G.,Van Handel, B.,Mikkola, H. K.,Hirschhorn, J. N.,Cantor, A. B., and Orkin, S. H. ( 2008) Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322, 18391842.
  • 232
    Chen, Z.,Luo, H. Y.,Steinberg, M. H., and Chui, D. H. ( 2009) BCL11A represses HBG transcription in K562 cells. Blood Cells Mol. Dis. 42, 144149.
  • 233
    Bank, A. ( 2006) Regulation of human fetal hemoglobin: new players, new complexities. Blood 107, 435443.
  • 234
    Yin, B.,Delwel, R.,Valk, P. J.,Wallace, M. R.,Loh, M. L.,Shannon, K. M., and Largaespada, D. A. ( 2009) A retroviral mutagenesis screen reveals strong cooperation between Bcl11a overexpression and loss of the Nf1 tumor suppressor gene. Blood 113, 10751085.
  • 235
    Huang, S.,Qiu, Y.,Stein, R. W., and Brandt, S. J. ( 1999) p300 functions as a transcriptional coactivator for the TAL1/SCL oncoprotein. Oncogene 18, 49584967.
  • 236
    Zhang, W.,Kadam, S.,Emerson, B. M., and Bieker, J. J. ( 2001) Site-specific acetylation by p300 or CREB binding protein regulates erythroid Krüppel-like factor transcriptional activity via its interaction with the SWI-SNF complex. Mol. Cell. Biol. 21, 24132422.
  • 237
    Armstrong, J. A.,Bieker, J. J., and Emerson, B. M. ( 1998) A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 95, 93104.
  • 238
    Kadam, S.,McAlpine, G. S.,Phelan, M. L.,Kingston, R. E.,Jones, K. A., and Emerson, B. M. ( 2000) Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes Dev. 14, 24412451.
  • 239
    Xu, Z.,Meng, X.,Cai, Y.,Koury, M. J., and Brandt, S. J. ( 2006) Recruitment of the SWI/SNF protein Brg1 by a multiprotein complex effects transcriptional repression in murine erythroid progenitors. Biochem J. 399, 297304.
  • 240
    Bultman, S. J.,Gebuhr, T. C., and Magnuson, T. ( 2005) A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in beta-globin expression and erythroid development. Genes Dev. 19, 28492861.
  • 241
    Stumpf, M.,Waskow, C.,Krotschel, M.,van Essen, D.,Rodriguez, P.,Zhang, X.,Guyot, B.,Roeder, R. G., and Borggrefe, T. ( 2006) The mediator complex functions as a coactivator for GATA-1 in erythropoiesis via subunit Med1/TRAP220. Proc. Natl. Acad. Sci. USA 103, 1850418509.
  • 242
    Deconinck, A. E.,Mead, P. E.,Tevosian, S. G.,Crispino, J. D.,Katz, S. G.,Zon, L. I., and Orkin, S. H. ( 2000) FOG acts as a repressor ofred blood cell development in Xenopus. Development 127, 20312040.
  • 243
    Katz, S. G.,Cantor, A. B., and Orkin, S. H. ( 2002) Interaction between FOG-1 and the corepressor C-terminal binding protein is dispensable for normal erythropoiesis in vivo. Mol. Cell. Biol. 22, 31213128.
  • 244
    Chen, X. and Bieker, J. J. ( 2001) Unanticipated repression function linked to erythroid Krüppel-like factor. Mol. Cell. Biol. 21, 31183125.
  • 245
    Huang, S. and Brandt, S. J. ( 2000) mSin3A regulates murine erythroleukemia cell differentiation through association with the TAL1 (or SCL) transcription factor. Mol. Cell. Biol. 20, 22482259.
  • 246
    Chen, X. and Bieker, J. J. ( 2004) Stage-specific repression by the EKLF transcriptional activator. Mol. Cell. Biol. 24, 1041610424.
  • 247
    Saleque, S.,Kim, J.,Rooke, H. M., and Orkin, S. H. ( 2007) Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol. Cell 27, 562572.
  • 248
    Chang, T. C. and Mendell, J. T. ( 2007) MicroRNAs in vertebrate physiology and human disease. Annu. Rev. Genom. Hum. Genet. 8, 215239.
  • 249
    O'Carroll, D.,Mecklenbrauker, I.,Das, P. P.,Santana, A.,Koenig, U.,Enright, A. J.,Miska, E. A., and Tarakhovsky, A. ( 2007) A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev. 21, 19992004.
  • 250
    Martinez, J. and Busslinger, M. ( 2007) Life beyond cleavage: the case of Ago2 and hematopoiesis. Genes Dev. 21, 19831988.
  • 251
    Garzon, R. and Croce, C. M. ( 2008) MicroRNAs in normal and malignant hematopoiesis. Curr. Opin. Hematol. 15, 352358.
  • 252
    Lawrie, C. H. ( 2007) MicroRNAs and haematology: small molecules, big function. Br. J. Haematol. 137, 503512.
  • 253
    Kluiver, J.,Kroesen, B. J.,Poppema, S., and van den Berg, A. ( 2006) The role of microRNAs in normal hematopoiesis and hematopoietic malignancies. Leukemia 20, 19311936.
  • 254
    Chen, C. Z. and Lodish, H. F. ( 2005) MicroRNAs as regulators of mammalian hematopoiesis. Semin. Immunol. 17, 155165.
  • 255
    Chen, C. Z.,Li, L.,Lodish, H. F., and Bartel, D. P. ( 2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 8386.
  • 256
    Felli, N.,Fontana, L.,Pelosi, E.,Botta, R.,Bonci, D.,Facchiano, F.,Liuzzi, F.,Lulli, V.,Morsilli, O.,Santoro, S.,Valtieri, M.,Calin, G. A.,Liu, C. G.,Sorrentino, A.,Croce, C. M., and Peschle, C. ( 2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl. Acad. Sci. USA 102, 1808118086.
  • 257
    Wang, Q.,Huang, Z.,Xue, H.,Jin, C.,Ju, X. L.,Han, J. D., and Chen, Y. G. ( 2008) MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood 111, 588595.
  • 258
    Kosaka, N.,Sugiura, K.,Yamamoto, Y.,Yoshioka, Y.,Miyazaki, H.,Komatsu, N.,Ochiya, T., and Kato, T. ( 2008) Identification of erythropoietin-induced microRNAs in haematopoietic cells during erythroid differentiation. Br. J. Haematol. 142, 293300.
  • 259
    Garzon, R.,Liu, S.,Fabbri, M.,Liu, Z.,Heaphy, C. E.,Callegari, E.,Schwind, S.,Pang, J.,Yu, J.,Muthusamy, N.,Havelange, V.,Volinia, S.,Blum, W.,Rush, L. J.,Perrotti, D.,Andreeff, M.,Bloomfield, C. D.,Byrd, J. C.,Chan, K.,Wu, L. C.,Croce, C. M., and Marcucci, G. ( 2009) MicroRNA -29b induces global DNA hypomethylation and tumor suppressor gene re-expression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113, 62696270.
  • 260
    Rathjen, T.,Nicol, C.,McConkey, G., and Dalmay, T. ( 2006) Analysis of short RNAs in the malaria parasite and its red blood cell host. FEBS Lett. 580, 51855188.
  • 261
    Bruchova, H.,Yoon, D.,Agarwal, A. M.,Mendell, J., and Prchal, J. T. ( 2007) Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp. Hematol. 35, 16571667.
  • 262
    Zhan, M.,Miller, C. P.,Papayannopoulou, T.,Stamatoyannopoulos, G., and Song, C. Z. ( 2007) MicroRNA expression dynamics during murine and human erythroid differentiation. Exp. Hematol. 35, 10151025.
  • 263
    Masaki, S.,Ohtsuka, R.,Abe, Y.,Muta, K., and Umemura, T. ( 2007) Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem. Biophys. Res. Commun. 364, 509514.
  • 264
    Lu, S. J.,Feng, Q.,Park, J. S.,Vida, L.,Lee, B. S.,Strausbauch, M.,Wettstein, P. J.,Hong, G. R., and Lanza, R. ( 2008) Biological properties and enucleation of red blood cells from human embryonic stem cells. Blood 112, 44754484.
  • 265
    Pase, L.,Layton, J. E.,Kloosterman, W. P.,Carradice, D.,Waterhouse, P. M., and Lieschke, G. J. ( 2009) miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood 113, 17941804.
  • 266
    Vegiopoulos, A.,Garcia, P.,Emambokus, N., and Frampton, J. ( 2006) Coordination of erythropoiesis by the transcription factor c-Myb. Blood 107, 47034710.
  • 267
    Zhao, H.,Kalota, A.,Jin, S., and Gewirtz, A. M. ( 2008) The c-myb Protooncogene and microRNA (miR)-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood 113, 505516.
  • 268
    Tsiftsoglou, A. S.,Nunez, M. T.,Wong, W., and Robinson, S. H. ( 1983) Dissociation of iron transcript and heme biosynthesis form commitment to terminal maturation of murine erythroleukemia cells. Proc. Natl. Acad. Sci. USA 80, 75287582.
  • 269
    Dmitrovsky, E.,Kuehl, W. M.,Hollis, G. F.,Kirsch, I. R.,Bender, T. P., and Segal, S. ( 1986) Expression of a transfected human c-myc oncogene inhibits differentiation of a mouse erythroleukaemia cell line. Nature 322, 748750.
  • 270
    Clarke, M. F.,Kukowska-Latallo, J. F.,Westin, E.,Smith, M., and Prochownik, E. V. ( 1988) Constitutive expression of a c-myb cDNA blocks Friend murine erythroleukemia cell differentiation. Mol. Cell. Biol. 8, 884892.
  • 271
    Smith, M. J., and Prochownik, E. V. ( 1992) Inhibition of c-jun causes reversible proliferative arrest and withdrawal from the cell cycle. Blood 79, 21072115.
  • 272
    Francastel, C.,Mazouzi, Z., and Robert-Lezenes, J. ( 1992) Co-induction of c-fos and junB during the latent period preceding commitment of Friend erythroleukemia cells to differentiation. Leukemia 6, 935939.
  • 273
    Rao, G.,Rekhtman, N.,Cheng, G.,Krasikov, T., and Skoultchi, A. I. ( 1997) Deregulated expression of the PU.1 transcription factor blocks murine erythroleukemia cell terminal differentiation. Oncogene 14, 123131.
  • 274
    Yamada, T.,Kondoh, N.,Matsumoto, M.,Yoshida, M.,Maekawa, A., and Oikawa, T. ( 1997) Overexpression of PU.1 induces growth and differentiation inhibition and apoptotic cell death in murine erythroleukemia cells. Blood 89, 13831393.
  • 275
    Oikawa, T.,Yamada, T.,Kihara-Negishi, F.,Yamamoto, H.,Kondoh, N.,Hitomi, Y., and Hashimoto, Y. ( 1999) The role of Ets family transcription factor PU.1 in hematopoietic cell differentiation, proliferation and apoptosis. Cell Death Differ. 6, 99608.
  • 276
    Chen, J.,Kremer, C. S., and Bender, T. P. ( 2002) A Myb dependent pathway maintains Friend murine erythroleukemia cells in an immature and proliferating state(2002) Oncogene 21, 18591869.
  • 277
    Kihara-Negishi, F.,Yamamoto, H.,Suzuki, M.,Yamada, T.,Sakurai, T.,Tamura, T., and Oikawa, T. ( 2001) In vivo complex formation of PU.1 with HDAC1 associated with PU.1-mediated transcriptional repression. Oncogene 20, 60396047.
  • 278
    Yamamoto, H.,Kihara-Negishi, F.,Yamada, T.,Suzuki, M.,Nakano, T., and Oikawa, T. ( 2002) Interaction between the hematopoietic Ets transcription factor Spi-B and the coactivator CREB-binding protein associated with negative cross-talk with c-myb. Cell Growth Differ. 13, 6975.
  • 279
    Hoffman, B.,Amanullah, A.,Shafarenko, M., and Liebermann, D. A. ( 2002) The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene 21, 34143421.
  • 280
    Juin, P.,Hueber, A. O.,Littlewood, T., and Evan, G. ( 1999) c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev. 13, 13671381.
  • 281
    Wong, W.,Robinson, S. H., and Tsiftsoglou, A. S. ( 1985) Relationship of mitochondrial membrane potential to hemoglobin synthesis during Friend cell maturation. Blood 66, 9991001.
  • 282
    Hotti, A.,Järvinen, K.,Siivola, P., and Hölttä, E. ( 2000) Caspases and mitochondria in c-Myc-induced apoptosis: identification of ATM as a new target of caspases. Oncogene 19, 23542362.
  • 283
    Diaz, C.,Lee, A. T.,McConkey, D. J., and Schroit, A. J. ( 1999) Phosphatidylserine externalization during differentiation-triggered apoptosis of erythroleukemic cells. Cell Death Differ. 6, 218226.
  • 284
    Terada, M.,Fried, J.,Nudel, U.,Rifkind, R. A., and Marks, P. A. ( 1977) Transient inhibition of initiation of S-phase associated with dimethyl sulfoxide induction of murine erythroleukemia cells to erythroid differentiation. Proc. Natl. Acad. Sci. USA 74, 248252.
  • 285
    Geller, R.,Levenson, R., and Housman, D. ( 1978) Significance of the cell cycle in commitment of murine erythroleukemia cells to erythroid differentiation. J. Cell. Physiol. 95, 213222.
  • 286
    Hsieh, F. F.,Barnett, L. A.,Green, W. F.,Freedman, K.,Matushansky, I.,Skoultchi, A. I., and Kelley, L. L. ( 2000) Cell cycle exit during terminal erythroid differentiation is associated with accumulation of p27kip1 and inactivation of cdk2 kinase. Blood 96, 27462754.
  • 287
    Matushansky, I.,Radparvar, F., and Skoultchi, A. I. ( 2000) Manipulating the onset of cell cycle withdrawal in differentiated erythroid cellswith cyclin-dependent kinases and inhibitors. Blood 96, 27552764.
  • 288
    Matushansky, I.,Radparvar, F., and Skoultchi, A. I. ( 2000) Reprogramming leukemic cells to terminal differentiation by inhibiting specific cyclin-dependent kinases in G1. Proc. Natl. Acad. Sci. USA 97, 1431714322.
  • 289
    Matushansky, I.,Radparvar, F., and Skoultchi, A. I. ( 2003) CDK6 blocks differentiation: coupling cell proliferation to the block to differentiation in leukemic cells. Oncogene 22, 41434149.
  • 290
    Zhu, L. and Skoultchi, A. I. ( 2001) Coordinating cell proliferation and differentiation. Curr. Opin. Genet. Dev. 11, 9197.
  • 291
    Matragkou, C. N.,Papachristou, E. T.,Tezias, S. S.,Tsiftsoglou, A. S.,Choli-Papadopoulou, T., and Vizirianakis, I. S. ( 2008) The potential role of ribosomal protein S5 on cell cycle arrest and initiation of murine erythroleukemia cell differentiation. J. Cell. Biochem. 104, 14771490.
  • 292
    Kobayashi, T.,Sasaki, Y.,Oshima, Y.,Yamamoto, H.,Mita, H.,Suzuki, H.,Toyota, M.,Tokino, T.,Itoh, F.,Imai, K., and Shinomura, Y. ( 2006) Activation of the ribosomal protein L13 gene in human gastrointestinal cancer. Int. J. Mol. Med. 18, 161170.
  • 293
    Papetti, M. and Skoultch, A. I. ( 2007) Reprogramming leukemia cells to terminal differentiation and growth arrest by RNA interference of PU.1. Mol. Cancer Res. 5, 10531062.
  • 294
    Levenson, R. and Housman, D. ( 1979) Memory of MEL cells to a previous exposure to inducer. Cell 17, 485490.
  • 295
    Tsiftsoglou, A. S. and Wong, W. ( 1985) Molecular and cellular Mechanisms of Leukemic hemopoietic cell differentiation: an analysis of the fiend system. Anticancer Res. 5, 8199.
  • 296
    Housman, D.,Levenson, R.,Volloch, V.,Tsiftsoglou, A.,Gusella, J. F.,Parker, D.,Kernen, J.,Mitrani, A.,Weeks, V.,Witte, O., and Besmer P. ( 1980) Control of proliferation and differentiation in cells transformed by Friend virus. Cold Spring Harbor Symp. Quant. Biol. 44, 11771185.
  • 297
    Vizirianakis, I. S. and Tsiftsoglou, A. S. ( 1995) N6-methyladenosine inhibits murine erythroleukemia cell maturation by blocking methylation of RNA and memory via conversion to S-(N6-methyl)-adenosylhomocysteine. Biochem. Pharmacol. 50, 18071814.
  • 298
    Tsiftsoglou, A. S.,Wong, W., and Housman, D. ( 1983) Dexamethasone-sensitive and insensitive responses during in vitro differentiation of Friend erythroleukemia cells. Biochim. Biophys. Acta 759, 160169.
  • 299
    Pappas, I. S.,Sophianos, D.,Tzartos, S., and Tsiftsoglou, A. S. ( 1996) Expression of memory, differentiation, and repression of c-myc and p53 genes in human RD/TE-671 cells induced by a ureido-derivative of pyridine (UDP-4). Cell Growth Differ. 7, 797809.
  • 300
    Higgs, D. R. and William, G. W. ( 2008) Long-range regulation of a globin gene expression during erythropoiesis. Curr. Opin. Hematol. 15, 176183.
  • 301
    Palstra, R. J.,de Laat, W., and Grosveld, F. ( 2008) Beta-globin regulation and long-range interactions. Adv. Genet. 61, 107142.
  • 302
    Wozniak, R. J. and Bresnick, E. H. ( 2008) Epigenetic control of complex loci during erythropoiesis. Curr. Top. Devel. Biol. 82, 5583.
  • 303
    Scher, W.,Scher, B. M., and Waxman, S. ( 1983) In: Current Concepts of Erythropoiesis( C. Dunn, D. R., ed.). pp. 301388, Wiley, New York.
  • 304
    Sheffery, M.,Rifkind, R. A., and Marks, P. A. ( 1982) Murine erythroleukemia cell differentiation: DNAse I hypersensitivity and DNA methylation near the globin genes Proc. Natl. Acad. Sci. USA 79, 11801184.
  • 305
    Yu, J. and Smith, R. D. ( 1985) Sequential alterations in globin gene chromatin structure during erythroleukemia cell differentiation. Proc. Natl. Acad. Sci. USA 260, 30353040.
  • 306
    Robertson, K. D. and Wolffe, A. P. ( 2000) DNA methylation in health and disease. Nature Rev. Genet. 1, 1119.
  • 307
    Jones, P.A. and Baylin, S. B. ( 2002) The fundamental role of epigenetic events in cancer. Nature Rev. Genet. 3, 415428.
  • 308
    Laird, P. W. ( 2003) The power and the promise of DNA methylation markers. Nature Rev. Cancer 3, 253266.
  • 309
    Ng, H. H. and Bird, A. ( 1999) DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9, 158163.
  • 310
    Robertson, K. D. ( 2002) DNA methylation and chromatin—unraveling the target web. Oncogene 21, 53615379.
  • 311
    Fathallah, H.,Portnoy, G., and Atweh, G. F. ( 2008) Epigenetic analysis of the human α- and β-globin gene clusters. Blood Cell Mol. Dis. 40, 166173.
  • 312
    De Laat, W.,Klous, P.,Kooren, J.,Noordermeer, D.,Palstra, R. J.,Simonis, M.,Splinter, E., and Grosveld, F. ( 2008) Three-dimensional organization of gene expression in erythroid cells. Curr. Top. Dev. Biol. 82, 117139.
  • 313
    Kosak, S. T.,Scalzo, D.,Alworth, S. V.,Li, F.,Palmer, S.,Enver, T.,Lee, J. S., and Groudine, M. ( 2007) Coordinate gene regulation during hematopoiesis is related to genomic organization. PLoS Biol. 5, e309.
  • 314
    Palstra, R. J.,Tolhuis, B.,Splinter, E.,Nijmeijer, R.,Grosveld, F., and de Laat, W. ( 2003) The beta-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35, 190194.
  • 315
    Perkins, A. C.,Sharpe, A. H., and Orkin, S. H. ( 1995) Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375, 318322.
  • 316
    Andrews, N. C.,Erdjument-Bromage, H.,Davidson, M. B.,Tempst, P., and Orkin, S. H. ( 1993) Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362, 722728.
  • 317
    Kim, A.,Song, S. H.,Brand, M., and Dean, A. ( 2007) Nucleosome and transcription activator antagonism at human β-globin locus control region DNase I hypersensitive sites. Nucleic Acids Res. 35, 58315838.
  • 318
    Cho, Y.,Song, S. H.,Lee, J. J.,Choi, N.,Kim, C. G.,Dean, A., and Song, S. H. ( 2008) The role of transcriptional activator GATA-1 at human β-globin HS2. Nucleic Acids Res. 36, 45214528.
  • 319
    Droge, P. and Muller-Hill, B. ( 2001) High local protein concentrations at promoters: strategies in prokaryotic and eukaryotic cells. Bioessays 23, 179183.
  • 320
    Anguita, E.,Hughes, J.,Heyworth, C.,Blobel, G. A.,Wood, W. G., and Higgs, D. R. ( 2004) Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. EMBO J. 23, 28412852.
  • 321
    Hughes, J. R.,Cheng, J. F.,Ventress, N.,Prabhakar, S.,Clark, K.,Anguita, E.,de Gobbi, M.,de Jong, P.,Rubin, E., and Higgs, D. R. ( 2005) Annotation of cis-regulatory elements by identification, subclassification, and functional assessment of multispecies conserved sequences. Proc. Natl. Acad. Sci. USA 102, 98309835.
  • 322
    Kielman, M. F.,Smits, R.,Hof, I., and Bernini, L. F. ( 1996) Characterization and comparison of the human and mouse Dist1/alpha-globin complex reveals a tightly packed multiple gene cluster containing differentially expressed transcription units. Genomics 32, 341351.
  • 323
    Higgs, D. R.,Vernimmen, D., and Wood, B. ( 2008) Long-range regulation of α-globin gene expression. Adv. Genet. 61, 143173.
  • 324
    Dekker, J.,Rippe, K.,Dekker, M., and Kleckner, N. ( 2002) Capturing chromosome conformation. Science 295, 13061311.
  • 325
    Splinter, E.,Heath, H.,Kooren, J.,Palstra, R. J.,Klous, P.,Grosveld, F.,Galjart, N., and de Laat, W. ( 2006) CTCF mediates long-range chromatin looping and local histone modification in the β-globin locus. Genes Dev. 20, 23492354.
  • 326
    Vernimmen, D.,de Gobbi, M.,Sloane-Stanley, J. A.,Wood, W. G., and Higgs, D. R. ( 2007) Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO J. 26, 20412051.