• 1
    Hood, D. A.,Irrcher, I.,Ljubicic, V., and Joseph, A. M. ( 2006) Coordination of metabolic plasticity in skeletal muscle. J. Exp. Biol. 209, 22652275.
  • 2
    Gething, M.-J. ( 1997) Guidebook to Molecular Chaperones and Protein-Folding Catalysts. Oxford University Press, Oxford.
  • 3
    Brodsky, J. L. ( 2007) The protective and destructive roles played by molecular chaperones during ERAD (endoplasmic-reticulum-associated degradation). Biochem. J. 404, 353363.
  • 4
    Ruddock, L. W. and Molinari, M. ( 2006) N-glycan processing in ER quality control. J. Cell. Sci. 119, 43734380.
  • 5
    Malhotra, J. D. and Kaufman, R. J. ( 2007) The endoplasmic reticulum and the unfolded protein response. Semin. Cell. Dev. Biol. 18, 716731.
  • 6
    Mori, K. ( 2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101, 451454.
  • 7
    Ron, D. and Walter, P. ( 2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell. Biol. 8, 519529.
  • 8
    Yoshida, H. ( 2007) ER stress and diseases. FEBS. J. 274, 630658.
  • 9
    Harding, H. P.,Zhang, Y.,Bertolotti, A.,Zeng, H., and Ron, D. ( 2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell. 5, 897904.
  • 10
    Harding, H. P.,Zhang, Y., and Ron, D. ( 1999) Protein translation and folding are coupled by an endoplasmic-reticulum- resident kinase. Nature 397, 271274.
  • 11
    Harding, H. P.,Novoa, I.,Zhang, Y.,Zeng, H.,Wek, R.,Schapira, M., and Ron, D. ( 2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell. 6, 10991108.
  • 12
    Harding, H. P.,Zhang, Y.,Zeng, H.,Novoa, I.,Lu, P. D.,Calfon, M.,Sadri, N.,Yun, C.,Popko, B.,Paules, R.,Stojdl, D. F.,Bell, J. C.,Hettmann, T.,Leiden, J. M., and Ron, D. ( 2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619633.
  • 13
    Yoshida, H.,Haze, K.,Yanagi, H.,Yura, T., and Mori, K. ( 1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 3374133749.
  • 14
    Haze, K.,Okada, T.,Yoshida, H.,Yanagi, H.,Yura, T.,Negishi, M., and Mori, K. ( 2001) Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem. J. 355, 1928.
  • 15
    Haze, K.,Yoshida, H.,Yanagi, H.,Yura, T., and Mori, K. ( 1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 37873399.
  • 16
    Ye, J.,Rawson, R. B.,Komuro, R.,Chen, X.,Dave, U. P.,Prywes, R.,Brown, M. S., and Goldstein, J. L. ( 2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 13551364.
  • 17
    Yamamoto, K.,Sato, T.,Matsui, T.,Sato, M.,Okada, T.,Yoshida, H.,Harada, A., and Mori, K. ( 2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev. Cell 13, 365376.
  • 18
    Yoshida, H.,Matsui, T.,Hosokawa, N.,Kaufman, R. J.,Nagata, K., and Mori, K. ( 2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev. Cell 4, 265271.
  • 19
    Yoshida, H.,Okada, T.,Haze, K.,Yanagi, H.,Yura, T.,Negishi, M., and Mori, K. ( 2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell Biol. 20, 67556767.
  • 20
    Yoshida, H.,Okada, T.,Haze, K.,Yanagi, H.,Yura, T.,Negishi, M., and Mori, K. ( 2001) Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol. Cell Biol. 21, 12391248.
  • 21
    Iwawaki, T.,Hosoda, A.,Okuda, T.,Kamigori, Y.,Nomura-Furuwatari, C.,Kimata, Y.,Tsuru, A., and Kohno, K. ( 2001) Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat. Cell. Biol. 3, 158164.
  • 22
    Tirasophon, W.,Lee, K.,Callaghan, B.,Welihinda, A., and Kaufman, R. J. ( 2000) The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev. 14, 27252736.
  • 23
    Tirasophon, W.,Welihinda, A. A., and Kaufman, R. J. ( 1998) A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12, 18121824.
  • 24
    Urano, F.,Wang, X.,Bertolotti, A.,Zhang, Y.,Chung, P.,Harding, H. P., and Ron, D. ( 2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664666.
  • 25
    Calfon, M.,Zeng, H.,Urano, F.,Till, J. H.,Hubbard, S. R.,Harding, H.P.,Clark, S. G., and Ron, D. ( 2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 9296.
  • 26
    Yoshida, H.,Matsui, T.,Yamamoto, A.,Okada, T., and Mori, K. ( 2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881891.
  • 27
    Adachi, Y.,Yamamoto, K.,Okada, K.,Yoshida, H.,Harada, A., and Mori, K. ( 2008) ATF6 is a transcription factor specialized in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct. Funct. 33, 7589.
  • 28
    Yoshida, H. ( 2007) Unconventional splicing of XBP-1 mRNA in the unfolded protein response. Antioxid. Redox. Signal 9, 23232333.
  • 29
    Yoshida, H.,Nadanaka, S.,Sato, R., and Mori, K. ( 2006) XBP1 is critical to protect cells from endoplasmic reticulum stress: evidence from site-2 protease-deficient Chinese hamster ovary cells. Cell Struct. Funct. 31, 109116.
  • 30
    Yoshida, H.,Oku, M.,Suzuki, M., and Mori, K. ( 2006) pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J. Cell Biol. 172, 565575.
  • 31
    Puthalakath, H.,O'Reilly, L. A.,Gunn, P.,Lee L.,Kelly, P. N.,Huntington, N. D.,Hughes, P. D.,Michalak, E. M.,McKimm-Breschkin, J.,Motoyama, N.,Gotoh, T.,Akira, S.,Bouillet, P., and Strasser, A. ( 2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129, 13371349.
  • 32
    Lee, A. H.,Chu, G. C.,Iwakoshi, N. N., and Glimcher, L. H. ( 2005) XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO. J. 24, 43684380.
  • 33
    Reimold, A. M.,Iwakoshi, N. N.,Manis, J.,Vallabhajosyula, P.,Szomolanyi-Tsuda, E.,Gravallese, E. M.,Friend, D.,Grusby, M. J.,Alt, F., and Glimcher, L. H. ( 2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300307.
  • 34
    Lock, E. A.,Mitchell, A. M., and Elcombe, C. R. ( 1989) Biochemical mechanisms of induction of hepatic peroxisome proliferation. Annu. Rev. Pharmacol. Toxicol. 29, 145163.
  • 35
    Veenhuis, M.,Mateblowski, M.,Kunau, W. H., and Harder, W. ( 1987) Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 3, 7784.
  • 36
    Sakai, Y.,Oku, M.,van der Klei, I. J., and Kiel, J. A. ( 2006) Pexophagy: autophagic degradation of peroxisomes. Biochim. Biophys. Acta. 1763, 17671775.
  • 37
    Fujiki, Y. ( 2000) Peroxisome biogenesis and peroxisome biogenesis disorders. FEBS. Lett. 476, 4246.
  • 38
    Fujiki, Y.,Miyata, N.,Matsumoto, N., and Tamura, S. ( 2008) Dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p involved in shuttling of the PTS1 receptor Pex5p in peroxisome biogenesis. Biochem. Soc. Trans. 36, 109113.
  • 39
    Platta, H. W. and Erdmann, R. ( 2007) Peroxisomal dynamics. Trends Cell Biol 17, 474484.
  • 40
    Karpichev, I. V. and Small, G. M. ( 2000) Evidence for a novel pathway for the targeting of a Saccharomyces cerevisiae peroxisomal protein belonging to the isomerase/hydratase family. J. Cell. Sci. 113(Part 3), 533544.
  • 41
    Karpichev, I. V.,Luo, Y.,Marians, R. C., and Small, G. M. ( 1997) A complex containing two transcription factors regulates peroxisome proliferation and the coordinate induction of beta-oxidation enzymes in Saccharomyces cerevisiae. Mol. Cell Biol. 17, 6980.
  • 42
    Rottensteiner, H.,Wabnegger, L.,Erdmann, R.,Hamilton, B.,Ruis, H.,Hartig, A., and Gurvitz, A. ( 2003) Saccharomyces cerevisiae PIP2 mediating oleic acid induction and peroxisome proliferation is regulated by Adr1p and Pip2p-Oaf1p. J. Biol. Chem. 278, 2760527611.
  • 43
    Rottensteiner, H.,Palmieri, L.,Hartig, A.,Hamilton, B.,Ruis, H.,Erdmann, R., and Gurvitz, A. ( 2002) The peroxisomal transporter gene ANT1 is regulated by a deviant oleate response element (ORE): characterization of the signal for fatty acid induction. Biochem. J. 365, 109117.
  • 44
    Gurvitz, A.,Hamilton, B.,Hartig, A.,Ruis, H.,Dawes, I. W., and Rottensteiner, H. ( 1999) A novel element in the promoter of the Saccharomyces cerevisiae gene SPS19 enhances ORE-dependent up-regulation in oleic acid and is essential for de-repression. Mol. Gen. Genet. 262, 481492.
  • 45
    Gurvitz, A.,Rottensteiner, H.,Hiltunen, J. K.,Binder, M.,Dawes, I. W.,Ruis, H., and Hamilton, B. ( 1997) Regulation of the yeast SPS19 gene encoding peroxisomal 2,4-dienoyl-CoA reductase by the transcription factors Pip2p and Oaf1p: beta-oxidation is dispensable for Saccharomyces cerevisiae sporulation in acetate medium. Mol. Microbiol. 26, 675685.
  • 46
    Smith, J. J.,Sydorskyy, Y.,Marelli, M.,Hwang, D.,Bolouri, H.,Rachubinski, R. A., and Aitchison, J. D. ( 2006) Expression and functional profiling reveal distinct gene classes involved in fatty acid metabolism. Mol. Syst. Biol. 2, 2006.0009.
  • 47
    Tam, Y. Y.,Torres-Guzman, J. C.,Vizeacoumar, F. J.,Smith, J. J.,Marelli, M.,Aitchison, J. D., and Rachubinski, R. A. ( 2003) Pex11-related proteins in peroxisome dynamics: a role for the novel peroxin Pex27p in controlling peroxisome size and number in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 40894102.
  • 48
    Smith, J. J.,Marelli, M.,Christmas, R. H.,Vizeacoumar, F. J.,Dilworth, D. J.,Ideker, T.,Galitski, T.,Dimitrov, K.,Rachubinski, R. A., and Aitchison, J. D. ( 2002) Transcriptome profiling to identify genes involved in peroxisome assembly and function. J. Cell Biol. 158, 259271.
  • 49
    Marshall, P. A.,Dyer, J. M.,Quick, M. E., and Goodman, J. M. ( 1996) Redox-sensitive homodimerization of Pex11p: a proposed mechanism to regulate peroxisomal division. J. Cell Biol. 135, 123137.
  • 50
    Sakai, Y.,Marshall, P. A.,Saiganji, A.,Takabe, K.,Saiki, H.,Kato, N., and Goodman, J. M. ( 1995) The Candida boidinii peroxisomal membrane protein Pmp30 has a role in peroxisomal proliferation and is functionally homologous to Pmp27 from Saccharomyces cerevisiae. J. Bacteriol. 177, 67736781.
  • 51
    Marshall, P. A.,Krimkevich, Y. I.,Lark, R. H.,Dyer, J. M.,Veenhuis, M., and Goodman, J. M. ( 1995) Pmp27 promotes peroxisomal proliferation. J. Cell. Biol. 129, 345355.
  • 52
    Fagarasanu, A.,Fagarasanu, M., and Rachubinski, R. A. ( 2007) Maintaining peroxisome populations: a story of division and inheritance. Annu. Rev. Cell Dev. Biol. 23, 321344.
  • 53
    Vizeacoumar, F. J.Torres-Guzman, J. C.,Tam, Y. Y.,Aitchison, J. D., and Rachubinski, R. A. ( 2003) YHR150w and YDR479c encode peroxisomal integral membrane proteins involved in the regulation of peroxisome number, size, and distribution in Saccharomyces cerevisiae. J. Cell. Biol. 161, 321332.
  • 54
    Rottensteiner, H.,Kal, A. J.,Hamilton, B.,Ruis, H., and Tabak, H. F. ( 1997) A heterodimer of the Zn2Cys6 transcription factors Pip2p and Oaf1p controls induction of genes encoding peroxisomal proteins in Saccharomyces cerevisiae. Eur. J. Biochem. 247, 776783.
  • 55
    Chelstowska, A. and Butow, R. A. ( 1995) RTG genes in yeast that function in communication between mitochondria and the nucleus are also required for expression of genes encoding peroxisomal proteins. J.Biol. Chem. 270, 1814118146.
  • 56
    Liu, Z. and Butow R. A. ( 2006) Mitochondrial retrograde signaling. Annu. Rev. Genet. 40, 159185.
  • 57
    Kos, W.,Kal, A. J.van Wilpe, S., and Tabak, H. F. ( 1995) Expression of genes encoding peroxisomal proteins in Saccharomyces cerevisiae is regulated by different circuits of transcriptional control. Biochim. Biophys. Acta. 1264, 7986.
  • 58
    Liao, X. S.,Small, W. C.,Srere, P. A., and Butow, R. A. ( 1991) Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 3846.
  • 59
    Phelps, C.,Gburcik, V.,Suslova, E.,Dudek, P.,Forafonov, F.,Bot, N.,MacLean, M.,Fagan, R. J., and Picard, D. ( 2006) Fungi and animals may share a common ancestor to nuclear receptors. Proc. Natl. Acad. Sci. USA 103, 70777081.
  • 60
    Schrader, M.,Reuber, B. E.,Morrell, J. C.Jimenez-Sanchez, G.,Obie, C.,Stroh, T. A.,Valle, D.,Schroer, T. A., and Gould, S. J. ( 1998) Expression of PEX11beta mediates peroxisome proliferation in the absence of extracellular stimuli. J. Biol. Chem. 273, 2960729614.
  • 61
    Shimizu, M.,Yamashita, D.,Yamaguchi, T.,Hirose, F., and Osumi, T. ( 2006) Aspects of the regulatory mechanisms of PPAR functions: analysis of a bidirectional response element and regulation by sumoylation. Mol. Cell. Biochem. 286, 3342.
  • 62
    Shimizu, M.,Takeshita, A.,Tsukamoto, T.,Gonzalez, F. J., and Osumi, T. ( 2004) Tissue-selective, bidirectional regulation of PEX11 alpha and perilipin genes through a common peroxisome proliferator response element. Mol. Cell. Biol. 24, 13131323.
  • 63
    Elmore, S. P.,Qian, T.,Grissom, S. F., and Lemasters, J. J. ( 2001) The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB. J. 15, 22862287.
  • 64
    Kim, I.,Rodriguez-Enriquez, S., and Lemasters J. J. ( 2007) Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 462, 245253.
  • 65
    Hamasaki, M.,Noda, T.,Baba, M., and Ohsumi, Y. ( 2005) Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic 6, 5665.
  • 66
    Bernales, S.,Schuck, S., and Walter, P. ( 2007) ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3, 285287.
  • 67
    Kruse, K. B.,Brodsky, J. L., and McCracken, A. A. ( 2006) Autophagy: an ER protein quality control process. Autophagy 2, 135137.
  • 68
    Yorimitsu, T.,Nair, U.,Yang, Z., and Klionsky, D. J. ( 2006) Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281, 3029930304.
  • 69
    Kamimoto, T.,Shoji, S.,Hidvegi, T.,Mizushima, N.,Umebayashi, K.,Perlmutter, D. H., and Yoshimori, T. ( 2006) Intracellular inclusions containing mutant alpha1-antitrypsin Z are propagated in the absence of autophagic activity. J. Biol. Chem. 281, 44674476.
  • 70
    Kouroku, Y.,Fujita, E.,Tanida, I.,Ueno, T.,Isoai, A.,Kumagai, H.,Ogawa, S.,Kaufman, R. J.,Kominami, E., and Momoi, T. ( 2007) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 14, 230239.
  • 71
    Ogata, M.,Hino, S.,Saito, A.,Morikawa, K.,Kondo, S.,Kanemoto, S.,Murakami, T.,Taniguchi, M.,Tanii, I.,Yoshinaga, K.,Shiosaka, S.,Hammarback, J. A.,Urano, F., and Imaizumi, K. ( 2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26, 92209231.
  • 72
    Ding, W. X.,Ni, H. M.,Gao, W.,Hou, Y. F.,Melan, M. A.,Chen, X.,Stolz, D. B.,Shao, Z. M., and Yin, X. M. ( 2007) Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem. 282, 47024710.
  • 73
    Ryan, M. T. and Hoogenraad, N. J. ( 2007) Mitochondrial-nuclear communications. Annu. Rev. Biochem. 76, 701722.
  • 74
    Wallace, D. C. ( 2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359407.
  • 75
    Scarpulla, R. C. ( 2002) Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286, 8189.
  • 76
    Leary, S. C. and Shoubridge, E. A. ( 2003) Mitochondrial biogenesis: which part of “NO” do we understand? Bioessays 25, 538541.
  • 77
    Butow, R. A. and Avadhani, N. G. ( 2004) Mitochondrial signaling: the retrograde response. Mol. Cell. 14, 115.
  • 78
    Amuthan, G.,Biswas, G.,Zhang, S. Y.,Klein-Szanto, A.,Vijayasarathy, C., and Avadhani, N. G. ( 2001) Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO. J. 20, 19101920.
  • 79
    Giannattasio, S.,Liu, Z.,Thornton, J., and Butow, R. A. ( 2005) Retrograde response to mitochondrial dysfunction is separable from TOR1/2 regulation of retrograde gene expression. J. Biol. Chem. 280, 4252842535.
  • 80
    Liu, Z.,Spirek, M.,Thornton, J., and Butow, R. A. ( 2005) A novel degron-mediated degradation of the RTG pathway regulator, Mks1p, by SCFGrr1. Mol. Biol. Cell. 16, 48934904.
  • 81
    Ferreira Junior, J. R.,Spirek, M.,Liu, Z., and Butow, R. A. ( 2005) Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae. Gene 354, 28.
  • 82
    Liu, Z.,Sekito, T.,Spirek, M.,Thornton, J., and Butow, R. A. ( 2003) Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mks1p. Mol. Cell. 12, 401411.
  • 83
    Sekito, T.,Thornton, J., and Butow, R. A. ( 2000) Mitochondria-to- nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol. Biol. Cell 11, 21032115.
  • 84
    Liu, Z. and Butow, R. A. ( 1999) A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol. Cell. Biol. 19, 67206728.
  • 85
    Rothermel, B. A.,Thornton, J. L., and Butow, R. A. ( 1997) Rtg3p, a basic helix-loop-helix/leucine zipper protein that functions in mitochondrial-induced changes in gene expression, contains independent activation domains. J. Biol. Chem. 272, 1980119807.
  • 86
    Liao, X. and Butow, R. A. ( 1993) RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72, 6171.
  • 87
    Haynes, C. M.,Petrova, K.,Benedetti, C.,Yang, Y., and Ron, D. ( 2007) ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev. Cell 13, 467480.
  • 88
    Horibe, T. and Hoogenraad N. J. ( 2007) The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response. PLoS. ONE. 2, e835.
  • 89
    Zhao, Q.,Wang, J.,Levichkin, I. V.,Stasinopoulos, S.,Ryan, M. T., and Hoogenraad, N. J. ( 2002) A mitochondrial specific stress response in mammalian cells. EMBO. J. 21, 44114419.
  • 90
    Martinus, R. D.,Garth, G. P.,Webster, T. L.,Cartwright, P.,Naylor, D. J.,Hoj, P. B., and Hoogenraad, N. J. ( 1996) Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur. J. Biochem. 240, 98103.
  • 91
    Aldridge, J. E.,Horibe, T., and Hoogenraad, N. J. ( 2007) Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS. ONE. 2, e874.
  • 92
    Chan, D. C. ( 2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 12411252.
  • 93
    Gould, S. J. and Valle, D. ( 2000) Peroxisome biogenesis disorders: genetics and cell biology. Trends. Genet. 16, 340345.
  • 94
    Zeevaert, R.,Foulquier, F.,Jaeken, J., and Matthijs, G. ( 2008) Deficiencies in subunits of the conserved oligomeric golgi (COG) complex define a novel group of congenital disorders of glycosylation. Mol. Genet. Metab. 93, 1521.