• 1
    Andreini, C.,Banci, L.,Bertini, I., and Rosato, A. ( 2006) Counting the zinc-proteins encoded in the human genome. J. Proteome. Res. 5, 196201.
  • 2
    Vallee, B. L. and Falchuk, K. H. ( 1993) The biochemical basis of zinc physiology. Physiol. Rev. 73, 79118.
  • 3
    MacDonald, R. S. ( 2000) The role of zinc in growth and cell proliferation. J. Nutr. 130, 1500S1508S.
  • 4
    Murakami, M. and Hirano, T. ( 2008) Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 99, 15151522.
  • 5
    King, J. C.,Shames, D. M., and Woodhouse, L. R. ( 2000) Zinc homeostasis in humans. J. Nutr. 130, 1360S1366S.
  • 6
    Hambidge, M. ( 2000) Human zinc deficiency. J. Nutr. 130, 1344S1349S.
  • 7
    Krebs, N. F. ( 2000) Overview of zinc absorption and excretion in the human gastrointestinal tract. J. Nutr. 130, 1374S1377S.
  • 8
    Steel, L. and Cousins, R. J. ( 1985) Kinetics of zinc absorption by luminally and vascularly perfused rat intestine. Am. J. Physiol. 248, G46G53.
  • 9
    Ford, D. ( 2004) Intestinal and placental zinc transport pathways. Proc. Nutr. Soc. 63, 2129.
  • 10
    Liuzzi, J. P. and Cousins, R. J. ( 2004) Mammalian zinc transporters. Annu. Rev. Nutr. 24, 151172.
  • 11
    Lichten, L. A. and Cousins, R. J. ( 2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu. Rev. Nutr. 29, 153176.
  • 12
    McMahon, R. J. and Cousins, R. J. ( 1998) Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc. Natl. Acad. Sci. USA 95, 48414846.
  • 13
    Liuzzi, J. P.,Bobo, J. A.,Cui, L.,McMahon, R. J., and Cousins, R. J. ( 2003) Zinc transporters 1, 2 and 4 are differentially expressed andlocalized in rats during pregnancy and lactation. J. Nutr. 133, 342351.
  • 14
    Yu, Y. Y.,Kirschke, C. P., and Huang, L. ( 2007) Immunohistochemical analysis of ZnT1, 4, 5, 6, and 7 in the mouse gastrointestinal tract. J. Histochem. Cytochem. 55, 223234.
  • 15
    Dufner-Beattie, J.,Wang, F.,Kuo, Y. M.,Gitschier, J.,Eide, D., and Andrews, G. K. ( 2003) The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J. Biol. Chem. 278, 3347433481.
  • 16
    Dufner-Beattie, J.,Kuo, Y. M.,Gitschier, J., and Andrews, G. K. ( 2004) The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J. Biol. Chem. 279, 4908249090.
  • 17
    Aggett, P. J. ( 1983) Acrodermatitis enteropathica. J. Inherit. Metab. Dis. 6, 3943.
  • 18
    Moynahan, E. J. ( 1974) Letter: acrodermatitis enteropathica: a lethal inherited human zinc-deficiency disorder. Lancet 2, 399400.
  • 19
    Wang, K.,Zhou, B.,Kuo, Y. M.,Zemansky, J., and Gitschier, J. ( 2002) A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am. J. Hum. Genet. 71, 6673.
  • 20
    Kury, S.,Dreno, B.,Bezieau, S.,Giraudet, S.,Kharfi, M.,Kamoun, R., and Moisan, J. P. ( 2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat. Genet. 31, 239240.
  • 21
    Weaver, B. P.,Dufner-Beattie, J.,Kambe, T., and Andrews, G. K. ( 2007) Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5). Biol. Chem. 388, 13011312.
  • 22
    Dufner-Beattie, J.,Weaver, B. P.,Geiser, J.,Bilgen, M.,Larson, M.,Xu, W., and Andrews, G. K. ( 2007) The mouse acrodermatitis enteropathica gene Slc39a4 (Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum. Mol. Genet. 16, 13911399.
  • 23
    Liuzzi, J. P.,Guo, L.,Chang, S. M., and Cousins, R. J. ( 2009) Kruppel-like factor 4 regulates adaptive expression of the zinc transporter Zip4 in mouse small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G517G523.
  • 24
    Kim, B. E.,Wang, F.,Dufner-Beattie, J.,Andrews, G. K.,Eide, D. J., and Petris, M. J. ( 2004) Zn2+-stimulated endocytosis of the mZIP4 zinc transporter regulates its location at the plasma membrane. J. Biol. Chem. 279, 45234530.
  • 25
    Mao, X.,Kim, B. E.,Wang, F.,Eide, D. J., and Petris, M. J. ( 2007) A histidine-rich cluster mediates the ubiquitination and degradation of the human zinc transporter, hZIP4, and protects against zinc cytotoxicity. J. Biol. Chem. 282, 69927000.
  • 26
    Kambe, T. and Andrews, G. K. ( 2009) Novel proteolytic processing of the ectodomain of the zinc transporter ZIP4 (SLC39A4) during zinc deficiency is inhibited by acrodermatitis enteropathica mutations. Mol. Cell. Biol. 29, 129139.
  • 27
    Palmiter, R. D. and Findley, S. D. ( 1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 14, 639649.
  • 28
    Kim, A. H.,Sheline, C. T.,Tian, M.,Higashi, T.,McMahon, R. J.,Cousins, R. J., and Choi, D. W. ( 2000) L-type Ca(2+) channel-mediated Zn(2+) toxicity and modulation by ZnT-1 in PC12 cells. Brain Res. 886, 99107.
  • 29
    Vancampen, D. R. and Mitchell, E. A. ( 1965) Absorption of Cu-64, Zn-65, Mo-99, and Fe-59 from ligated segments of the rat gastrointestinal tract. J. Nutr. 86, 120124.
  • 30
    Lee, H. H.,Prasad, A. S.,Brewer, G. J., and Owyang, C. ( 1989) Zinc absorption in human small intestine. Am. J. Physiol. 256, G87G91.
  • 31
    Liuzzi, J. P.,Blanchard, R. K., and Cousins, R. J. ( 2001) Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in rats. J. Nutr. 131, 4652.
  • 32
    Langmade, S. J.,Ravindra, R.,Daniels, P. J., and Andrews, G. K. ( 2000) The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J. Biol. Chem. 275, 3480334809.
  • 33
    Andrews, G. K.,Wang, H.,Dey, S. K., and Palmiter, R. D. ( 2004) Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Genesis 40, 7481.
  • 34
    Wang, X.,Wu, Y., and Zhou, B. ( 2009) Dietary zinc absorption is mediated by ZnT1 i. Drosophila melanogaster. FASEB J. 23, 26502661.
  • 35
    Bell, S. G. and Vallee, B. L. ( 2009) The metallothionein/thionein system: an oxidoreductive metabolic zinc link. Chembiochem 10, 5562.
  • 36
    Yamasaki, S.,Sakata-Sogawa, K.,Hasegawa, A.,Suzuki, T.,Kabu, K.,Sato, E.,Kurosaki, T.,Yamashita, S.,Tokunaga, M.,Nishida, K., and Hirano, T. ( 2007) Zinc is a novel intracellular second messenger. J. Cell. Biol. 177, 637645.
  • 37
    Sensi, S. L.,Ton-That, D.,Sullivan, P. G.,Jonas, E. A.,Gee, K. R.,Kaczmarek, L. K., and Weiss, J. H. ( 2003) Modulation of mitochondrial function by endogenous Zn2+ pools. Proc. Natl. Acad. Sci. USA 100, 61576162.
  • 38
    Kirschke, C. P. and Huang, L. ( 2003) ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. J. Biol. Chem. 278, 40964102.
  • 39
    Suzuki, T.,Ishihara, K.,Migaki, H.,Matsuura, W.,Kohda, A.,Okumura, K.,Nagao, M.,Yamaguchi-Iwai, Y., and Kambe, T. ( 2005) Zinc transporters, ZnT5 and ZnT7, are required for the activation of alkaline phosphatases, zinc-requiring enzymes that are glycosylphosphatidylinositol-anchored to the cytoplasmic membrane. J. Biol. Chem. 280, 637643.
  • 40
    Suzuki, T.,Ishihara, K.,Migaki, H.,Nagao, M.,Yamaguchi-Iwai, Y., and Kambe, T. ( 2005) Two different zinc transport complexes of cation diffusion facilitator proteins localized in the secretory pathway operate to activate alkaline phosphatases in vertebrate cells. J. Biol. Chem. 280, 3095630962.
  • 41
    Huang, L.,Yu, Y. Y.,Kirschke, C. P.,Gertz, E. R., and Lloyd, K. K. ( 2007) Znt7 (Slc30a7)-deficient mice display reduced body zinc status and body fat accumulation. J. Biol. Chem. 282, 3705337063.
  • 42
    Kambe, T.,Narita, H.,Yamaguchi-Iwai, Y.,Hirose, J.,Amano, T.,Sugiura, N.,Sasaki, R.,Mori, K.,Iwanaga, T., and Nagao, M. ( 2002) Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J. Biol. Chem. 277, 1904919055.
  • 43
    Jackson, K. A.,Helston, R. M.,McKay, J. A.,O'Neill, E. D.,Mathers, J. C., and Ford, D. ( 2007) Splice variants of the human zinc transporter ZnT5 (SLC30A5) are differentially localized and regulated by zinc through transcription and mRNA stability. J. Biol. Chem. 282, 1042310431.
  • 44
    Valentine, R. A.,Jackson, K. A.,Christie, G. R.,Mathers, J. C.,Taylor, P. M., and Ford, D. ( 2007) ZnT5 variant B is a bidirectional zinc transporter and mediates zinc uptake in human intestinal Caco-2 cells. J. Biol. Chem. 282, 1438914393.
  • 45
    Cragg, R. A.,Phillips, S. R.,Piper, J. M.,Varma, J. S.,Campbell, F. C.,Mathers, J. C., and Ford, D. ( 2005) Homeostatic regulation of zinc transporters in the human small intestine by dietary zinc supplementation. Gut 54, 469478.
  • 46
    Inoue, K.,Matsuda, K.,Itoh, M.,Kawaguchi, H.,Tomoike, H.,Aoyagi, T.,Nagai, R.,Hori, M.,Nakamura, Y., and Tanaka, T. ( 2002) Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum. Mol. Genet. 11, 17751784.
  • 47
    Huang, L.,Kirschke, C. P., and Gitschier, J. ( 2002) Functional characterization of a novel mammalian zinc transporter, ZnT6. J. Biol. Chem. 277, 2638926395.
  • 48
    Huang, L.,Kirschke, C. P.,Zhang, Y., and Yu, Y. Y. ( 2005) The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J. Biol. Chem. 280, 1545615463.
  • 49
    Taylor, K. M.,Morgan, H. E.,Johnson, A., and Nicholson, R. I. ( 2004) Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters. Biochem. J. 377, 131139.
  • 50
    Matsuura, W.,Yamazaki, T.,Yamaguchi-Iwai, Y.,Masuda, S.,Nagao, M.,Andrews, G. K., and Kambe, T. ( 2009) SLC39A9 (ZIP9) regulates zinc homeostasis in the secretory pathway: characterization of the ZIP subfamily I protein in vertebrate cells. Biosci. Biotechnol. Biochem. 73, 11421148.
  • 51
    Fukada, T.,Civic, N.,Furuichi, T.,Shimoda, S.,Mishima, K.,Higashiyama, H.,Idaira, Y.,Asada, Y.,Kitamura, H.,Yamasaki, S.,Hojyo, S.,Nakayama, M.,Ohara, O.,Koseki, H.,Dos Santos, H. G.,Bonafe, L.,Ha-Vinh, R.,Zankl, A.,Unger, S.,Kraenzlin, M. E.,Beckmann, J. S.,Saito, I.,Rivolta, C.,Ikegawa, S.,Superti-Furga, A., and Hirano, T. ( 2008) The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One 3, e3642.
  • 52
    Huang, L. and Gitschier, J. ( 1997) A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat. Genet. 17, 292297.
  • 53
    Piletz, J. E. and Ganschow, R. E. ( 1978) Zinc deficiency in murine milk underlies expression of the lethal milk (lm) mutation. Science 199, 181183.
  • 54
    Ackland, M. L. and Mercer, J. F. ( 1992) The murine mutation, lethal milk, results in production of zinc-deficient milk. J. Nutr. 122, 12141218.
  • 55
    Lee, D. Y.,Shay, N. F., and Cousins, R. J. ( 1992) Altered zinc metabolism occurs in murine lethal milk syndrome. J. Nutr. 122, 22332238.
  • 56
    Michalczyk, A. A.,Allen, J.,Blomeley, R. C., and Ackland, M. L. ( 2002) Constitutive expression of hZnT4 zinc transporter in human breast epithelial cells. Biochem. J. 364, 105113.
  • 57
    Murgia, C.,Vespignani, I.,Cerase, J.,Nobili, F., and Perozzi, G. ( 1999) Cloning, expression, and vesicular localization of zinc transporter Dri 27/ZnT4 in intestinal tissue and cells. Am. J. Physiol. 277, G1231G1239.
  • 58
    Erway, L. C. and Grider, A.Jr. ( 1984) Zinc metabolism in lethal-milk mice. Otolith, lactation, and aging effects. J. Hered. 75, 480484.
  • 59
    Murgia, C.,Vespignani, I.,Rami, R., and Perozzi, G. ( 2006) The Znt4 mutation inlethal milk mice affects intestinal zinc homeostasis through the expression of other Zn transporters. Genes Nutr. 1, 6170.
  • 60
    Henshall, S. M.,Afar, D. E.,Rasiah, K. K.,Horvath, L. G.,Gish, K.,Caras, I.,Ramakrishnan, V.,Wong, M.,Jeffry, U.,Kench, J. G.,Quinn, D. I.,Turner, J. J.,Delprado, W.,Lee, C. S.,Golovsky, D.,Brenner, P. C.,O'Neill, G. F.,Kooner, R.,Stricker, P. D.,Grygiel, J. J.,Mack, D. H., and Sutherland, R. L. ( 2003) Expression of the zinc transporter ZnT4 is decreased in the progression from early prostate disease to invasive prostate cancer. Oncogene 22, 60056012.
  • 61
    Palmiter, R. D.,Cole, T. B., and Findley, S. D. ( 1996) ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 15, 17841791.
  • 62
    Chowanadisai, W.,Lonnerdal, B., and Kelleher, S. L. ( 2006) Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J. Biol. Chem. 281, 3969939707.
  • 63
    Eide, D. J. ( 2006) Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta. 1763, 711722.
  • 64
    Kim, B. E.,Nevitt, T., and Thiele, D. J. ( 2008) Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 4, 176185.
  • 65
    Masters, B. A.,Kelly, E. J.,Quaife, C. J.,Brinster, R. L., and Palmiter, R. D. ( 1994) Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc. Natl. Acad. Sci. USA 91, 584588.
  • 66
    Davis, S. R.,McMahon, R. J., and Cousins, R. J. ( 1998) Metallothionein knockout and transgenic mice exhibit altered intestinal processing of zinc with uniform zinc-dependent zinc transporter-1 expression. J. Nutr. 128, 825831.
  • 67
    Wang, F.,Kim, B. E.,Petris, M. J., and Eide, D. J. ( 2004) The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells. J. Biol. Chem. 279, 5143351441.
  • 68
    Liuzzi, J. P.,Aydemir, F.,Nam, H.,Knutson, M. D., and Cousins, R. J. ( 2006) Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc. Natl. Acad. Sci. USA 103, 1361213617.
  • 69
    Liuzzi, J. P.,Lichten, L. A.,Rivera, S.,Blanchard, R. K.,Aydemir, T. B.,Knutson, M. D.,Ganz, T., and Cousins, R. J. ( 2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc. Natl. Acad. Sci. USA 102, 68436848.
  • 70
    Girijashanker, K.,He, L.,Soleimani, M.,Reed, J. M.,Li, H.,Liu, Z.,Wang, B.,Dalton, T. P., and Nebert, D. W. ( 2008) Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol. Pharmacol. 73, 14131423.