• 1
    Lee, B. J.,Worland, P. J.,Davis, J. N.,Stadtman, T. C., and Hatfield, D. L. ( 1989) Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA. J. Biol. Chem. 264, 97249727.
  • 2
    Leinfelder, W.,Stadtman, T. C., and Bock, A. ( 1989) Occurrence in vivo of selenocysteyl-tRNA(SERUCA) in Escherichia coli. Effect of sel mutations. J. Biol. Chem. 264, 97209723.
  • 3
    Xu, X. M.,Carlson, B. A.,Mix, H.,Zhang, Y.,Saira, K.,Glass, R. S.,Berry, M. J.,Gladyshev, V. N., and Hatfield, D. L. ( 2007) Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis. Biochem. J. 404, 115120.
  • 4
    Xu, X. M.,Carlson, B. A.,Irons, R.,Mix, H.,Zhong, N.,Gladyshev, V. N., and Hatfield, D. L. ( 2007) Biosynthesis of selenocysteine on its tRNA in eukaryotes. PLoS Biol. 5, e4.
  • 5
    Maenpa, P. H., and Bernfield, M. R. ( 1970) A specific hepatic transfer RNA for Phosphoserine. Proc. Natl. Acad. Sci. USA 67, 688695.
  • 6
    Hatfield, D. L., and Portugal, F. H. ( 1970) Seryl-tRNA in mammalian tissues: Chromatographic differences in brain and liver and a specific response to the codon, UGA. Proc. Natl. Acad. Sci. USA 67, 12001206.
  • 7
    Diamond, A.,Dudock, B., and Hatfield, D. L. ( 1981) Structure and properties of a bovine liver UGA suppressor serine tRNA with a tryptophan anticodon. Cell 25, 497506.
  • 8
    Hatfield, D. L.,Diamond, A., and Dudock, B. ( 1982) Opal suppressor serine tRNAs from bovine liver form phosphoseryl-tRNA. Proc. Natl. Acad. Sci. USA 79, 62156219.
  • 9
    Carlson, B. A.,Xu, X. M.,Kryukov, G. V.,Rao, M.,Berry, M. J.,Gladyshev, V. N., and Hatfield, D. L. ( 2004) Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase. Proc. Natl. Acad. Sci. USA 101, 1284812853.
  • 10
    Forchhammer, K., and Bock, A. ( 1991) Selenocysteine synthase from Escherichia coli. Analysis of the reaction sequence. J. Biol. Chem. 266, 63246328.
  • 11
    Forchhammer, K.,Leinfelder, W.,Boesmiller, K.,Veprek, B., and Bock, A. ( 1991) Selenocysteine synthase from Escherichia coli. Nucleotide sequence of the gene (selA) and purification of the protein. J. Biol. Chem. 266, 63186323.
  • 12
    Yuan, J.,Palioura, S.,Salazar, J. C.,Su, D.,O'Donoghue, P.,Hohn, M. J.,Cardoso, A. M.,Whitman, W. B., and Soll, D. ( 2006) Proc Natl Acad Sci USA. 103, 1892318927.
  • 13
    Kernebeck, T.,Lohse, A. W., and Grotzinger, J. ( 2001) A bioinformatical approach suggests the function of autoimmune hepatitis target antigen soluble liver antigen/liver pancreas. Hepatology 34, 230233.
  • 14
    Small-Howard, A.,Morozova, N.,Stoytcheva, Z.,Forry, E. P.,Mansell, J. B.,Harney, J. W.,Carlson, B. A.,Xu, X. M.,Hatfield, D. L., and Berry, M. J. ( 2006) Supramolecular complexes mediate selenocysteine incorporation in vivo. Mol. Cell. Biol. 26, 23372346.
  • 15
    Ding, F., and Grabowski, P. J. ( 1999) Identification of a protein component of a mammalian tRNA(Sec) complex implicated in the decoding of UGA as selenocysteine. RNA 5, 15611569.
  • 16
    Xu, X. M.,Mix, H.,Carlson, B. A.,Grabowski, P. J.,Gladyshev, V. N.,Berry, M. J., and Hatfield, D. L. ( 2005) Evidence for direct roles of two additional factors, SECp43 and SLA, in the selenoprotein synthesis machinery. J. Biol. Chem. 280, 4156841575.
  • 17
    Glass, R. S.,Singh, W. P.,Jung, W.,Veres, Z.,Scholz, T. D., and Stadtman, T. C. ( 1993) Monoselenophosphate: Synthesis, characterization, and identity with the prokaryotic biological selenium donor, compound SePX. Biochemistry 32, 1255512559.
  • 18
    Kim, I. Y., and Stadtman, T. C. ( 1995) Selenophosphate synthetase: Detection in extracts of rat tissues by immunoblot assay and partial purification of the enzyme from the archaean Methanococcus vannielii. Proc. Natl. Acad. Sci. USA 92, 77107713.
  • 19
    Low, S. C.,Harney, J. W., and Berry, M. J. ( 1995) Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis. J. Biol. Chem. 270, 2165921664.
  • 20
    Guimaraes, M. J.,Peterson, D.,Vicari, A.,Cocks, B. G.,Copeland, N. G.,Gilbert, D. J.,Jenkins, N. A.,Ferrick, D. A.,Kastelein, R. A.,Bazan, J. F., and Zlotnik, A. ( 1996) Identification of a novel selD homolog from eukaryotes, bacteria, and archaea: Is there an autoregulatory mechanism in selenocysteine metabolism? Proc. Natl. Acad. Sci. USA 93, 1508615091.
  • 21
    Kim, I. Y.,Guimaraes, M. J.,Zlotnik, A.,Bazan, J. F., and Stadtman, T. C. ( 1997) Fetal mouse selenophosphate synthetase 2 (SPS2): Characterization of the cysteine mutant form overproduced in a baculovirus-insect cell system. Proc. Natl. Acad. Sci. USA 94, 418421.
  • 22
    Kim, T. S.,Yu, M. H.,Chung, Y. W.,Kim, J.,Choi, E. J.,Ahn, K., and Kim, I. Y. ( 1999) Fetal mouse selenophosphate synthetase 2 (SPS2): Biological activities of mutant forms in Escherichia coli. Mol. Cell 9, 422428.
  • 23
    Tamura, T.,Yamamoto, S.Takahata, M.,Sakaguchi, H.,Tanaka, H.,Stadtman, T. C., and Inagaki, K.( 2004) Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation. Proc. Natl. Acad. Sci. USA 101, 1616216167.
  • 24
    Forchhammer, K.,Leinfelder, W. and Bock, A.( 1989) Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature 342, 453456.
  • 25
    Baron, C.,Heider, J.and Bock, A.( 1993) Interaction of translation factor SELB with the formate dehydrogenase H selenopolypeptide mRNA. Proc. Natl. Acad. Sci. USA 90, 41814185.
  • 26
    Kromayer, M.,Wilting, R.Tormay, P.,and Bock, A.( 1996) Domain structure of the prokaryotic selenocysteine-specific elongation factor SelB. J. Mol. Biol. 262, 413420.
  • 27
    Thanbichler, M.,Bock, A., and Goody, R. S. ( 2000) Kinetics of the interaction of translation factor SelB from Escherichia coli with guanosine nucleotides and selenocysteine insertion sequence RNA. J. Biol. Chem. 275, 204582066.
  • 28
    Tujebajeva, R. M.,Copeland, P. R.Xu, X. M.,Carlson, B. A.,Harney, J. W.,Driscoll, D. M.,Hatfield, D. L., and Berry, M. J.( 2000) Decoding apparatus for eukaryotic selenocysteine incorporation. EMBO Rep. 2, 158163.
  • 29
    Fagegaltier, D.,Hubert, N.Yamada, K.,Mizutani, T.,Carbon, P., and Krol, A.( 2000) Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J. 19, 47964805.
  • 30
    Zavacki, A. M.,Mansell, J. B.Chung, M.,Klimovitsky, B.,Harney, J. W., and Berry, M. J.( 2003) Coupled tRNASec dependent assembly of the selenocysteine decoding apparatus. Mol. Cell 11, 773781.
  • 31
    Copeland, P. R., and Driscoll, D. M. ( 1999) Purification, redox sensitivity, and RNA binding properties of SECIS-binding protein 2, a protein involved in selenoprotein biosynthesis. J. Biol. Chem. 274, 2544725454.
  • 32
    Copeland, P. R.,Fletcher, J. E.Carlson, B. A.,Hatfield, D. L.,and Driscoll, D. M.( 2000) A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J. 19, 306314.
  • 33
    Copeland, P. R.,Stepanik, V. A. and Driscoll, D. M.( 2001) Insight into mammalian selenocysteine insertion: Domain structure and ribosome binding properties of Sec insertion sequence binding protein 2. Mol. Cell. Biol. 21, 14911498.
  • 34
    Fletcher, J. E.,Copeland, P. R. and Driscoll, D. M.( 2000) Polysome distribution of phospholipid hydroperoxide glutathione peroxidase mRNA: Evidence for a block in elongation at the UGA/selenocysteine codon. RNA 6, 15731584.
  • 35
    Koonin, E. V.,Bork, P. and Sander, C. ( 1994) A novel RNA-binding motif in omnipotent suppressors of translation termination, ribosomal proteins and a ribosome modification enzyme? Nucleic Acids Res. 22, 21662167.
  • 36
    Dumitrescu, A. M.,Liao, X. H.Abdullah, M. S.,Lado-Abeal, J.,Majed, F. A.,Moeller, L. C.,Boran, G.,Schomburg, L.,Weiss, R. E., and Refetoff, S.( 2005) Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat. Genet. 37, 12471252.
  • 37
    Bubenik, J. L., and Driscoll, D. M. ( 2007) Altered RNA-binding activity underlies abnormal thyroid hormone metabolism linked to a mutation in Sec Insertion Sequence Binding Protein 2. J. Biol. Chem. 282, 3465334662.
  • 38
    Squires, J. E.,Stoytchev, I.Forry, E. P., and Berry, M. J. ( 2007) SBP2 binding affinity is a major determinant in differential selenoprotein mRNA translation and sensitivity to nonsense-mediated decay. Mol. Cell Biol. 27, 78487855.
  • 39
    Allamand, V.,Richard, P.Lescure, A.,Ledeuil, C.,Desjardin, D.,Petit, N.,Gartioux, C.,Ferreiro, A.,Krol, A.,Pelligrini, N.,Urtizberea, J. A., and Guicheney, P. ( 2006) A single homozygous point mutation in a 3′ untranslated region motif of selenoprotein N causes SEPN1-related myopathy. EMBO Rep. 7, 450454.
  • 40
    de Jesus, L. A.,Hoffmann, P. R.Michaud, T.,Forry, E. P.,Small-Howard, A.,Stillwell, R. J.,Morozova, N.,Harney, J. W., and Berry, M. J. ( 2006) Nuclear assembly of UGA decoding complexes on selenoprotein mRNAs: A mechanism for eluding nonsense mediated decay? Mol. Cell Biol. 26, 17951805.
  • 41
    Papp, L. V.,Lu, J.Striebel, F.,Kennedy, D.,Holmgren, A., and Khanna, K. K. ( 2006) The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation function. Mol. Cell Biol. 26, 48954910.
  • 42
    Chavatte, L.,Brown, B. A. and Driscoll, D. M. ( 2005) Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes. Nat. Struct. Mol. Biol. 12, 408416.
  • 43
    Wu, R.,Shen, Q. and Newburger, P. E. ( 2000) Recognition and binding of the human selenocysteine insertion sequence by nucleolin. J. Cell Biochem. 77, 507516.