SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Pena, M. M.,Lee, J., andThiele, D. J. ( 1999) A delicate balance: homeostatic control of copper uptake and distribution. J. Nutr. 129, 12511260.
  • 2
    Solans, A.,Zambrano, A., andBarrientos, A. ( 2004) Cytochrome c oxidase deficiency: from yeast to human. Preclinica 2, 336348.
  • 3
    Pecina, P.,Houstkova, H.,Hansikova, H.,Zeman, J., andHoustek, J. ( 2004) Genetic defects of cytochrome c oxidase assembly. Physiol. Res. 53, S213S23.
  • 4
    Shoubridge, E. A. ( 2001) Cytochrome c oxidase deficiency. Am. J. Med. Genet. 106, 4652.
  • 5
    Valnot, I.,Osmond, S.,Gigarel, N.,Mehaye, B.,Amiel, J.,Cormier-Daire, V.,Munnich, A.,Bonnefont, J. P.,Rustin, P., andRotig, A. ( 2000) Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am. J. Hum. Genet. 67, 11041109.
  • 6
    Papadopoulou, L. C.,Sue, C. M.,Davidson, M. M.,Tanji, K.,Nishino, I.,Sadlock, J. E.,Krishna, S.,Walker, W.,Selby, J.,Glerum, D. M., et al. ( 1999) Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat. Genet. 23, 333337.
  • 7
    Jaksch, M.,Ogilvie, I.,Yao, J.,Kortenhaus, G.,Bresser, H. G.,Gerbitz, K. D., andShoubridge, E. A. ( 2000) Mutations in SCO2 are associated with a distinct form of hypertrophic cardiomyopathy and cytochrome c oxidase deficiency. Hum. Mol. Genet. 9, 795801.
  • 8
    Sue, C. M.,Karadimas, C.,Checcarelli, N.,Tanji, K.,Papadopoulou, L. C.,Pallotti, F.,Guo, F. L.,Shanske, S.,Hirano, M.,De Vivo, D. C., et al. ( 2000) Differential features of patients with mutations in two COX assembly genes, SURF-1 and SCO2. Ann. Neurol. 47, 589595.
  • 9
    Salviati, L.,Sacconi, S.,Rasalan, M. M.,Kronn, D. F.,Braun, A.,Canoll, P.,Davidson, M.,Shanske, S.,Bonilla, E.,Hays, A. P., et al. ( 2002) Cytochrome c oxidase deficiency due to a novel SCO2 mutation mimics Werdnig-Hoffmann disease. Arch. Neurol. 59, 862865.
  • 10
    Prohaska, J. R. andGybina, A. A. ( 2004) Intracellular copper transport in mammals. J. Nutr. 134, 10031006.
  • 11
    Yoshikawa, S.,Shinzawa-Itoh, K.,Nakashima, R.,Yaono, R.,Yamashita, E.,Inoue, N.,Yao, M.,Fei, M. J.,Libeu, C. P.,Mizushima, T., et al. ( 1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280, 17231729.
  • 12
    Saraste, M. ( 1990) Structural features of cytochrome oxidase. Q. Rev. Biophys. 23, 331366.
  • 13
    Hill, B. C. ( 1994) Modeling the sequence of electron transfer reactions in the single turnover of reduced, mammalian cytochrome c oxidase with oxygen. J. Biol. Chem. 269, 24192425.
  • 14
    Brunori, M.,Giuffre, A.,Malatesta, F., andSarti, P. ( 1998) Investigating the mechanism of electron transfer to the binuclear center in Cu-heme oxidases. J. Bioenerg. Biomembr. 30, 4145.
  • 15
    Brunori, M.,Giuffre, A., andSarti, P. ( 2005) Cytochrome c oxidase, ligands and electrons. J. Inorg. Biochem. 99, 324336.
  • 16
    Babcock, G. T. andWikstrom, M. ( 1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356, 301309.
  • 17
    Saraste, M. ( 1994) Structure and evolution of cytochrome oxidase. Antonie Van Leeuwenhoek 65, 285287.
  • 18
    Tsukihara, T.,Aoyama, H.,Yamashita, E.,Tomizaki, T.,Yamaguchi, H.,Shinzawa-Itoh, K.,Nakashima, R.,Yaono, R., andYoshikawa, S. ( 1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272, 11361144.
  • 19
    Ostermeier, C.,Harrenga, A.,Ermler, U., andMichel, H. ( 1997) Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc. Natl. Acad. Sci. USA 94, 1054710553.
  • 20
    Coyne, H. J.,III,Ciofi-Baffoni, S.,Banci, L.,Bertini, I.,Zhang, L.,George, G. N., andWinge, D. R. ( 2007) The characterization and role of zinc binding in yeast Cox4. J. Biol. Chem. 282, 89268934.
  • 21
    Schmidt, B.,McCracken, J., andFerguson-Miller, S. ( 2003) A discrete water exit pathway in the membrane protein cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 100, 1553915542.
  • 22
    Hiser, L.,Di Valentin, M.,Hamer, A. G., andHosler, J. P. ( 2000) Cox11p is required for stable formation of the Cu(B) and magnesium centers of cytochrome c oxidase. J. Biol. Chem. 275, 619623.
  • 23
    Barrientos, A.,Barros, M. H.,Valnot, I.,Rotig, A.,Rustin, P., andTzagoloff, A. ( 2002) Cytochrome oxidase in health and disease. Gene 286, 5363.
  • 24
    Stiburek, L.,Hansikova, H.,Tesarova, M.,Cerna, L., andZeman, J. ( 2006) Biogenesis of eukaryotic cytochrome c oxidase. Physiol. Res. 55, S27S41.
  • 25
    Cobine, P. A.,Pierrel, F., andWinge, D. R. ( 2006) Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochim. Biophys. Acta 1763, 759772.
  • 26
    Bertini, I. andCavallaro, G. ( 2008) Metals in the “omics” world: copper homeostasis and cytochrome c oxidase assembly in a new light. J. Biol. Inorg. Chem. 13, 314.
  • 27
    Huffman, D. L. andO'Halloran, T. V. ( 2001) Function, structure, and mechanism of intracellular copper trafficking proteins. Annu. Rev. Biochem. 70, 677701.
  • 28
    Dancis, A.,Haile, D.,Yuan, D. S., andKlausner, R. D. ( 1994) The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J. Biol. Chem. 269, 2566025667.
  • 29
    Pena, M. M.,Puig, S., andThiele, D. J. ( 2000) Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. J. Biol. Chem. 275, 3324433251.
  • 30
    Hassett, R.,Dix, D. R.,Eide, D. J., andKosman, D. J. ( 2000) The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. Biochem. J. 351, 477484.
  • 31
    Cohen, A.,Nelson, H., andNelson, N. ( 2000) The family of SMF metal ion transporters in yeast cells. J. Biol. Chem. 275, 3338833394.
  • 32
    Georgatsou, E.,Mavrogiannis, L. A.,Fragiadakis, G. S., andAlexandraki, D. ( 1997) The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J. Biol. Chem. 272, 1378613792.
  • 33
    Pufahl, R. A.,Singer, C. P.,Peariso, K. L.,Lin, S. J.,Schmidt, P. J.,Fahrni, C. J.,Culotta, V. C.,Penner-Hahn, J. E., andO'Halloran, T. V. ( 1997) Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278, 853856.
  • 34
    Arnesano, F.,Banci, L.,Bertini, I.,Cantini, F.,Ciofi-Baffoni, S.,Huffman, D. L., andO'Halloran, T. V. ( 2001) Characterization of the binding interface between the copper chaperone Atx1 and the first cytosolic domain of Ccc2 ATPase. J. Biol. Chem. 276, 4136541376.
  • 35
    Banci, L.,Bertini, I.,Cantini, F.,Felli, I. C.,Gonnelli, L.,Hadjiliadis, N.,Pierattelli, R.,Rosato, A., andVoulgaris, P. ( 2006) The Atx1-Ccc2 complex is a metal-mediated protein-protein interaction. Nat. Chem. Biol. 2, 367368.
  • 36
    Davis-Kaplan, S. R.,Askwith, C. C.,Bengtzen, A. C.,Radisky, D., andKaplan, J. ( 1998) Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channels. Proc. Natl. Acad. Sci. USA 95, 1364113645.
  • 37
    Yuan, D. S.,Stearman, R.,Dancis, A.,Dunn, T.,Beeler, T., andKlausner, R. D. ( 1995) The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc. Natl. Acad. Sci. USA 92, 26322636.
  • 38
    Culotta, V. C.,Klomp, L. W.,Strain, J.,Casareno, R. L.,Krems, B., andGitlin, J. D. ( 1997) The copper chaperone for superoxide dismutase. J. Biol. Chem. 272, 2346923472.
  • 39
    Sturtz, L. A.,Diekert, K.,Jensen, L. T.,Lill, R., andCulotta, V. C. ( 2001) A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J. Biol. Chem. 276, 3808438089.
  • 40
    Lamb, A. L.,Torres, A. S.,O'Halloran, T. V., andRosenzweig, A. C. ( 2000) Heterodimer formation between superoxide dismutase and its copper chaperone. Biochemistry 39, 1472014727.
  • 41
    Furukawa, Y.,Torres, A. S., andO'Halloran, T. V. ( 2004) Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J. 23, 28722881.
  • 42
    Carroll, M. C.,Girouard, J. B.,Ulloa, J. L.,Subramaniam, J. R.,Wong, P. C.,Valentine, J. S., andCulotta, V. C. ( 2004) Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc. Natl. Acad. Sci. USA 101, 59645969.
  • 43
    Glerum, D. M.,Shtanko, A., andTzagoloff, A. ( 1996) Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J. Biol. Chem. 271, 1450414509.
  • 44
    Beers, J.,Glerum, D. M., andTzagoloff, A. ( 1997) Purification, characterization, and localization of yeast Cox17p, a mitochondrial copper shuttle. J. Biol. Chem. 272, 3319133196.
  • 45
    Heaton, D. N.,George, G. N.,Garrison, G., andWinge, D. R. ( 2001) The mitochondrial copper metallochaperone Cox17 exists as an oligomeric, polycopper complex. Biochemistry 40, 743751.
  • 46
    Cobine, P. A.,Ojeda, L. D.,Rigby, K. M., andWinge, D. R. ( 2004) Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix. J. Biol. Chem. 279, 1444714455.
  • 47
    Nobrega, M. P.,Bandeira, S. C.,Beers, J., andTzagoloff, A. ( 2002) Characterization of COX19, a widely distributed gene required for expression of mitochondrial cytochrome oxidase. J. Biol. Chem. 277, 4020640211.
  • 48
    Barros, M. H.,Johnson, A., andTzagoloff, A. ( 2004) COX23, a homologue of COX17, is required for cytochrome oxidase assembly. J. Biol. Chem. 279, 3194331947.
  • 49
    Cobine, P. A.,Pierrel, F.,Bestwick, M. L., andWinge, D. R. ( 2006) Mitochondrial matrix copper complex used in metallation of cytochrome oxidase and superoxide dismutase. J. Biol. Chem. 281, 3655236559.
  • 50
    Carr, H. S.,George, G. N., andWinge, D. R. ( 2002) Yeast Cox11, a protein essential for cytochrome c oxidase assembly, is a Cu(I)-binding protein. J. Biol. Chem. 277, 3123731242.
  • 51
    Carr, H. S.,Maxfield, A. B.,Horng, Y. C., andWinge, D. R. ( 2005) Functional analysis of the domains in Cox11. J. Biol. Chem. 280, 2266422669.
  • 52
    Tzagoloff, A.,Capitanio, N.,Nobrega, M. P., andGatti, D. ( 1990) Cytochrome oxidase assembly in yeast requires the product of COX11, a homolog of the P. denitrificans protein encoded by ORF3. EMBO J. 9, 27592764.
  • 53
    Khalimonchuk, O.,Ostermann, K., andRodel, G. ( 2005) Evidence for the association of yeast mitochondrial ribosomes with Cox11p, a protein required for the Cu(B) site formation of cytochrome c oxidase. Curr. Genet. 47, 223233.
  • 54
    Banting, G. S. andGlerum, D. M. ( 2006) Mutational analysis of the Saccharomyces cerevisiae cytochrome c oxidase assembly protein Cox11p. Eukaryot. Cell 5, 568578.
  • 55
    Glerum, D. M.,Shtanko, A., andTzagoloff, A. ( 1996) SCO1 and SCO2 act as high copy suppressors of a mitochondrial copper recruitment defect in Saccharomyces cerevisiae. J. Biol. Chem. 271, 2053120535.
  • 56
    Abajian, C. andRosenzweig, A. C. ( 2006) Crystal structure of yeast Sco1. J. Biol. Inorg. Chem. 11, 459466.
  • 57
    Beers, J.,Glerum, D. M., andTzagoloff, A. ( 2002) Purification and characterization of yeast Sco1p, a mitochondrial copper protein. J. Biol. Chem. 277, 2218522190.
  • 58
    Chinenov, Y. V. ( 2000) Cytochrome c oxidase assembly factors with a thioredoxin fold are conserved among prokaryotes and eukaryotes. J. Mol. Med. 78, 239242.
  • 59
    Krummeck, G. andRodel, G. ( 1990) Yeast SCO1 protein is required for a post-translational step in the accumulation of mitochondrial cytochrome c oxidase subunits I and II. Curr. Genet. 18, 1315.
  • 60
    Lode, A.,Kuschel, M.,Paret, C., andRodel, G. ( 2000) Mitochondrial copper metabolism in yeast: interaction between Sco1p and Cox2p. FEBS Lett. 485, 1924.
  • 61
    Nittis, T.,George, G. N., andWinge, D. R. ( 2001) Yeast Sco1, a protein essential for cytochrome c oxidase function is a Cu(I)-binding protein. J. Biol. Chem. 276, 4252042526.
  • 62
    Rentzsch, A.,Krummeck-Weiss, G.,Hofer, A.,Bartuschka, A.,Ostermann, K., andRodel, G. ( 1999) Mitochondrial copper metabolism in yeast: mutational analysis of Sco1p involved in the biogenesis of cytochrome c oxidase. Curr. Genet. 35, 103108.
  • 63
    Horng, Y. C.,Cobine, P. A.,Maxfield, A. B.,Carr, H. S., andWinge, D. R. ( 2004) Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase. J. Biol. Chem. 279, 3533435340.
  • 64
    Palumaa, P.,Kangur, L.,Voronova, A., andSillard, R. ( 2004) Metal-binding mechanism of Cox17, a copper chaperone for cytochrome c oxidase. Biochem J. 382, 307314.
  • 65
    Punter, F. A. andGlerum, D. M. ( 2003) Mutagenesis reveals a specific role for Cox17p in copper transport to cytochrome oxidase. J. Biol. Chem. 278, 3087530880.
  • 66
    Voronova, A.,Meyer-Klaucke, W.,Meyer, T.,Rompel, A.,Krebs, B.,Kazantseva, J.,Sillard, R., andPalumaa, P. ( 2007) Oxidative switches in functioning of mammalian copper chaperone Cox17. Biochem. J. 408, 139148.
  • 67
    Heaton, D.,Nittis, T.,Srinivasan, C., andWinge, D. R. ( 2000) Mutational analysis of the mitochondrial copper metallochaperone Cox17. J. Biol. Chem. 275, 3758237587.
  • 68
    Abajian, C.,Yatsunyk, L. A.,Ramirez, B. E., andRosenzweig, A. C. ( 2004) Yeast cox17 solution structure and Copper(I) binding. J. Biol. Chem. 279, 5358453592.
  • 69
    Amaravadi, R.,Glerum, D. M., andTzagoloff, A. ( 1997) Isolation of a cDNA encoding the human homolog of COX17, a yeast gene essential for mitochondrial copper recruitment. Hum. Genet. 99, 329333.
  • 70
    Rigby, K.,Zhang, L.,Cobine, P. A.,George, G. N., andWinge, D. R. ( 2007) Characterization of the cytochrome c oxidase assembly factor Cox19 of Saccharomyces cerevisiae. J. Biol. Chem. 282, 1023310242.
  • 71
    McEwen, J. E.,Hong, K. H.,Park, S., andPreciado, G. T. ( 1993) Sequence and chromosomal localization of two PET genes required for cytochrome c oxidase assembly in Saccharomyces cerevisiae. Curr. Genet. 23, 914.
  • 72
    Chacinska, A.,Pfannschmidt, S.,Wiedemann, N.,Kozjak, V.,Sanjuan Szklarz, L. K.,Schulze-Specking, A.,Truscott, K. N.,Guiard, B.,Meisinger, C., and Pfanner, N. ( 2004) Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J. 23, 37353746.
  • 73
    Mesecke, N.,Terziyska, N.,Kozany, C.,Baumann, F.,Neupert, W.,Hell, K., andHerrmann, J. M. ( 2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121, 10591069.
  • 74
    Gabriel, K.,Milenkovic, D.,Chacinska, A.,Muller, J.,Guiard, B.,Pfanner, N., andMeisinger, C. ( 2007) Novel mitochondrial intermembrane space proteins as substrates of the MIA import pathway. J. Mol. Biol. 365, 612620.
  • 75
    Bihlmaier, K.,Mesecke, N.,Terziyska, N.,Bien, M.,Hell, K., andHerrmann, J. M. ( 2007) The disulfide relay system of mitochondria is connected to the respiratory chain. J. Cell Biol. 179, 389395.
  • 76
    Muller, J. M.,Milenkovic, D.,Guiard, B.,Pfanner, N., andChacinska, A. ( 2007) Precursor oxidation by Mia40 and Erv1 promotes vectorial transport of proteins into the mitochondrial intermembrane space. Mol. Biol. Cell 19, 226236.
  • 77
    Rissler, M.,Wiedemann, N.,Pfannschmidt, S.,Gabriel, K.,Guiard, B.,Pfanner, N., andChacinska, A. ( 2005) The essential mitochondrial protein Erv1 cooperates with Mia40 in biogenesis of intermembrane space proteins. J. Mol. Biol. 353, 485492.
  • 78
    Terziyska, N.,Lutz, T.,Kozany, C.,Mokranjac, D.,Mesecke, N.,Neupert, W.,Herrmann, J. M., andHell, K. ( 2005) Mia40, a novel factor for protein import into the intermembrane space of mitochondria is able to bind metal ions. FEBS Lett. 579, 179184.
  • 79
    Allen, S.,Balabanidou, V.,Sideris, D. P.,Lisowsky, T., andTokatlidis, K. ( 2005) Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. J. Mol. Biol. 353, 937944.
  • 80
    Dabir, D. V.,Leverich, E. P.,Kim, S. K.,Tsai, F. D.,Hirasawa, M.,Knaff, D. B., andKoehler, C. M. ( 2007) A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1. EMBO J. 26, 48014811.
  • 81
    Lee, J.,Hofhaus, G., andLisowsky, T. ( 2000) Erv1p from Saccharomyces cerevisiae is a FAD-linked sulfhydryl oxidase. FEBS Lett. 477, 6266.
  • 82
    Speno, H.,Taheri, M. R.,Sieburth, D., andMartin, C. T. ( 1995) Identification of essential amino acids within the proposed CuA binding site in subunit II of Cytochrome c oxidase. J. Biol. Chem. 270, 2536325369.
  • 83
    Banci, L.,Bertini, I.,Calderone, V.,Ciofi-Baffoni, S.,Mangani, S.,Martinelli, M.,Palumaa, P., andWang, S. ( 2006) A hint for the function of human Sco1 from different structures. Proc. Natl. Acad. Sci. USA 103, 85958600.
  • 84
    Horng, Y. C.,Leary, S. C.,Cobine, P. A.,Young, F. B.,George, G. N.,Shoubridge, E. A., andWinge, D. R. ( 2005) Human Sco1 and Sco2 function as copper-binding proteins. J. Biol. Chem. 280, 3411334122.
  • 85
    Balatri, E.,Banci, L.,Bertini, I.,Cantini, F., andCiofi-Baffoni, S. ( 2003) Solution structure of Sco1: a thioredoxin-like protein Involved in cytochrome c oxidase assembly. Structure 11, 14311443.
  • 86
    Ye, Q.,Imriskova-Sosova, I.,Hill, B. C., andJia, Z. ( 2005) Identification of a disulfide switch in BsSco, a member of the Sco family of cytochrome c oxidase assembly proteins. Biochemistry 44, 29342942.
  • 87
    Smits, P. H.,De Haan, M.,Maat, C., andGrivell, L. A. ( 1994) The complete sequence of a 33 kb fragment on the right arm of chromosome II from Saccharomyces cerevisiae reveals 16 open reading frames, including ten new open reading frames, five previously identified genes and a homologue of the SCO1 gene. Yeast 10, S75S80.
  • 88
    Petruzzella, V.,Tiranti, V.,Fernandez, P.,Ianna, P.,Carrozzo, R., andZeviani, M. ( 1998) Identification and characterization of human cDNAs specific to BCS1, PET112, SCO1, COX15, and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain. Genomics 54, 494504.
  • 89
    Paret, C.,Ostermann, K.,Krause-Buchholz, U.,Rentzsch, A., andRodel, G. ( 1999) Human members of the SCO1 gene family: complementation analysis in yeast and intracellular localization. FEBS Lett. 447, 6570.
  • 90
    Leary, S. C.,Kaufman, B. A.,Pellecchia, G.,Guercin, G. H.,Mattman, A.,Jaksch, M., andShoubridge, E. A. ( 2004) Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Hum. Mol. Genet. 13, 183948.
  • 91
    Leary, S. C.,Cobine, P. A.,Kaufman, B. A.,Guercin, G. H.,Mattman, A.,Palaty, J.,Lockitch, G.,Winge, D. R.,Rustin, P.,Horvath, R., et al. ( 2007) The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis. Cell Metab. 5, 920.
  • 92
    Briere, J. J. andTzagoloff, A. ( 2007) The scoop on Sco. Mol. Cell 25, 176178.
  • 93
    Khalimonchuk, O.,Bird, A., andWinge, D. R. ( 2007) Evidence for a pro-oxidant intermediate in the assembly of cytochrome oxidase. J. Biol. Chem. 282, 1744217449.
  • 94
    Khalimonchuk, O. andWinge, D. R. Function and redox state of mitochondrial localized cysteine-rich proteins important in the assembly of cytochrome c oxidase. Biochim. Biophys. Acta in press.
  • 95
    Arnesano, F.,Balatri, E.,Banci, L.,Bertini, I., andWinge, D. R. ( 2005) Folding studies of Cox17 reveal an important interplay of cysteine oxidation and copper binding. Structure 13, 713722.
  • 96
    Williams, J. C.,Sue, C.,Banting, G. S.,Yang, H.,Glerum, D. M.,Hendrickson, W. A., andSchon, E. A. ( 2005) Crystal structure of human SCO1: implications for redox signaling by a mitochondrial cytochrome c oxidase “assembly” protein. J. Biol. Chem. 280, 1520215211.
  • 97
    Banci, L.,Bertini, I.,Ciofi-Baffoni, S.,Leontari, I.,Martinelli, M.,Palumaa, P.,Sillard, R., andWang, S. ( 2007) Human Sco1 functional studies and pathological implications of the P174L mutant. Proc. Natl. Acad. Sci. USA 104, 1520.
  • 98
    Maret, W. ( 2003) Cellular zinc and redox states converge in the metallothionein/thionein pair. J. Nutr. 133, 1460S1462S.
  • 99
    Neupert, W. andHerrmann, J. M. ( 2007) Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76, 723749.