Paclitaxel is an antimitotic antitumour drug highly effective against a broad range of cancers considered refractory to conventional chemotherapy. One of the main serious side effects of paclitaxel treatment is the induction of peripheral neuropathic pain that often diminishes the patient's quality of life. In this study, we evaluated the severity of the neuropathy induced by paclitaxel and the inflammatory reaction in the dorsal horn of the spinal cord in young, adult and aged male CD1 mice.


Hyperalgesia to noxious thermal stimulus and allodynia to non-noxious mechanical stimulus were evaluated using the plantar test and the von Frey filament model, respectively. Spinal cord microglia and astrocytes expression was assessed using Iba1 and glial fibrillary acidic protein immunofluorescence staining, respectively.


All groups of mice showed a higher nociceptive reaction to thermal noxious (hyperalgesia) and mechanical non-noxious (allodynia) stimuli after paclitaxel treatment. However, these signs of neuropathy were enhanced in young mice followed by aged animals. Additionally, paclitaxel evoked a marked microglial and astrocytic response in the spinal cord of young and aged mice, whereas this enhanced reactivity was less important in adult mice. Indeed, the most severe glial activation observed in juvenile animals correlated well with major signs of neuropathy in this group of age.


Our results demonstrate that paclitaxel-induced neuropathy in mice is an age-dependent phenomenon whose severity devolves on glial response.